


How Can httpx Enhance Safe and Efficient Downstream HTTP Requests in FastAPI?
Making Downstream HTTP Requests Safely in FastAPI Using httpx
When making HTTP requests in FastAPI using the standard Python requests library, thread safety becomes a concern amidst concurrent requests. To address this issue effectively, consider employing httpx, a library that offers both thread safety and improved performance.
Using the httpx Async API
httpx comes with an asynchronous API, allowing you to easily make HTTP requests while efficiently handling multiple concurrent tasks. Here's an example of its usage within a FastAPI endpoint:
from httpx import AsyncClient from fastapi import FastAPI, Request app = FastAPI() @app.on_event("startup") async def startup_event(): app.state.client = AsyncClient() @app.on_event('shutdown') async def shutdown_event(): await app.state.client.aclose() @app.get('/') async def home(request: Request): client = request.state.client req = client.build_request('GET', 'https://www.example.com') r = await client.send(req, stream=True) return StreamingResponse(r.aiter_raw(), background=BackgroundTask(r.aclose))
In this example:
- startup_event() initializes and stores a shared httpx AsyncClient in the app's state.
- shutdown_event() gracefully closes the client upon application shutdown.
- home() performs an HTTP request to https://www.example.com using the shared client, making use of streaming to efficiently handle large responses.
Using the httpx Synchronous API
If defining endpoints with async def is not desired, opting for the synchronous API of httpx becomes necessary. This approach maintains thread safety and simplifies endpoint implementation:
from httpx import Client from fastapi import FastAPI, Request app = FastAPI() @app.on_event("startup") def startup_event(): app.state.client = Client() @app.on_event('shutdown') async def shutdown_event(): await app.state.client.aclose() @app.get('/') def home(request: Request): client = request.state.client req = client.build_request('GET', 'https://www.example.com') try: r = client.send(req) content_type = r.headers.get('content-type') except Exception as e: content_type = 'text/plain' e = str(e) if content_type == 'application/json': return r.json() elif content_type == 'text/plain': return PlainTextResponse(content=r.text) else: return Response(content=r.content)
In this example, the synchronous API handles HTTP requests within a try/except block, allowing for graceful handling of any exceptions that may arise during the request.
Additional Features and Considerations
- Async API Benefits: The async API provides superior performance and scales more efficiently with concurrent requests.
- Streaming Responses: Use streaming responses when dealing with large amounts of data in requests or responses.
- Controlling Connection Pool: You can optimize connection pool usage by setting the limits argument when creating the httpx client.
- Thread Safety: httpx is designed to be thread-safe, ensuring reliable execution across multiple threads.
By leveraging httpx and its features, you can confidently make downstream HTTP requests within FastAPI, handling multiple concurrent tasks seamlessly and ensuring application stability.
The above is the detailed content of How Can httpx Enhance Safe and Efficient Downstream HTTP Requests in FastAPI?. For more information, please follow other related articles on the PHP Chinese website!

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use