Home >Backend Development >Python Tutorial >How to Apply a Function to Multiple Pandas Dataframe Columns and Create a New Column?

How to Apply a Function to Multiple Pandas Dataframe Columns and Create a New Column?

DDD
DDDOriginal
2024-12-07 17:12:13945browse

How to Apply a Function to Multiple Pandas Dataframe Columns and Create a New Column?

Applying a Function to Multiple Columns of a Pandas Dataframe

The situation is as follows: a function and a dataframe are defined, and the goal is to apply the function to two specific columns of the dataframe to generate a new column. However, an attempt to use the apply method with the function results in an error.

To address this issue, there are multiple approaches:

Lambda Expression with Column Names

A concise and readable solution is to use a lambda expression within the apply method:

df['col_3'] = df.apply(lambda x: get_sublist(x.col_1, x.col_2), axis=1)

This approach directly utilizes the column names instead of numerical indices, making it less prone to errors.

Example with Example Data

Consider the example data:

df = pd.DataFrame({'ID':['1', '2', '3'], 'col_1': [0, 2, 3], 'col_2':[1, 4, 5]})
mylist = ['a', 'b', 'c', 'd', 'e', 'f']

Running the previous code will generate a new column, col_3, containing the desired result:

  ID  col_1  col_2      col_3
0  1      0      1     [a, b]
1  2      2      4  [c, d, e]
2  3      3      5  [d, e, f]

Square Brackets for Non-Standard Column Names

If the column names contain spaces or match existing dataframe attributes, square brackets can be used:

df['col_3'] = df.apply(lambda x: f(x['col 1'], x['col 2']), axis=1)

The above is the detailed content of How to Apply a Function to Multiple Pandas Dataframe Columns and Create a New Column?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn