Home >Backend Development >Python Tutorial >How Do `map`, `applymap`, and `apply` Differ in Pandas Vectorization?
Vectorization Methods in Pandas: map, applymap, and apply
Pandas offers convenient methods for applying functions to data structures. map, applymap, and apply are three such methods that facilitate data manipulation and transformation. Each method serves a specific purpose, and their usage depends on the desired outcome.
map
map is employed when applying a function element-wise to a Series. It returns a new Series with the transformed values.
Example:
import pandas as pd series = pd.Series([1, 2, 3, 4, 5]) def square(x): return x ** 2 squared_series = series.map(square) print(squared_series) # Output: # 0 1 # 1 4 # 2 9 # 3 16 # 4 25 # dtype: int64
applymap
applymap applies a function element-wise to a DataFrame. It creates a new DataFrame with the transformed values.
Example:
df = pd.DataFrame({ 'name': ['John', 'Jane', 'Tom'], 'age': [20, 25, 30] }) def capitalize(x): return x.capitalize() df['name'] = df['name'].applymap(capitalize) print(df) # Output: # name age # 0 John 20 # 1 Jane 25 # 2 Tom 30
apply
apply allows for more complex transformations by applying a function row- or column-wise to a DataFrame. It returns a Series or DataFrame with the results.
Example:
def get_age_group(age): if age <= 20: return 'Young' elif age <= 40: return 'Middle-aged' else: return 'Senior' df['age_group'] = df['age'].apply(get_age_group) print(df) # Output: # name age age_group # 0 John 20 Young # 1 Jane 25 Middle-aged # 2 Tom 30 Middle-aged
The above is the detailed content of How Do `map`, `applymap`, and `apply` Differ in Pandas Vectorization?. For more information, please follow other related articles on the PHP Chinese website!