Converting Between java.time.LocalDateTime and java.util.Date
Java 8 introduced a new date and time API, including the java.time.LocalDateTime class for timezone-independent date-with-time values. However, many legacy codebases still use the older java.util.Date class. This raises the question of how to convert between the two classes.
Although there are no direct conversion methods, the following steps provide a solution:
-
Convert java.util.Date to Instant:
Date in = new Date(); Instant instant = in.toInstant();
-
Convert Instant to LocalDateTime (specifying Timezone):
LocalDateTime ldt = LocalDateTime.ofInstant(instant, ZoneId.systemDefault());
-
Convert LocalDateTime to ZonedDateTime (specify Timezone):
ZoneId systemZoneId = ZoneId.systemDefault(); ZonedDateTime zdt = ldt.atZone(systemZoneId);
-
Convert ZonedDateTime to Instant:
Instant convertedInstant = zdt.toInstant();
-
Convert Instant back to java.util.Date:
Date out = Date.from(convertedInstant);
It's important to note that the conversion to LocalDateTime and back to java.util.Date may result in a different instant due to Daylight Saving Time.
Moreover, java.util.Date uses a different calendar for dates before October 15, 1582, while java.time.* uses the ISO calendar for all time. This difference may affect compatibility when comparing dates before 1582.
The above is the detailed content of How do I convert between java.time.LocalDateTime and java.util.Date?. For more information, please follow other related articles on the PHP Chinese website!

JVMmanagesgarbagecollectionacrossplatformseffectivelybyusingagenerationalapproachandadaptingtoOSandhardwaredifferences.ItemploysvariouscollectorslikeSerial,Parallel,CMS,andG1,eachsuitedfordifferentscenarios.Performancecanbetunedwithflagslike-XX:NewRa

Java code can run on different operating systems without modification, because Java's "write once, run everywhere" philosophy is implemented by Java virtual machine (JVM). As the intermediary between the compiled Java bytecode and the operating system, the JVM translates the bytecode into specific machine instructions to ensure that the program can run independently on any platform with JVM installed.

The compilation and execution of Java programs achieve platform independence through bytecode and JVM. 1) Write Java source code and compile it into bytecode. 2) Use JVM to execute bytecode on any platform to ensure the code runs across platforms.

Java performance is closely related to hardware architecture, and understanding this relationship can significantly improve programming capabilities. 1) The JVM converts Java bytecode into machine instructions through JIT compilation, which is affected by the CPU architecture. 2) Memory management and garbage collection are affected by RAM and memory bus speed. 3) Cache and branch prediction optimize Java code execution. 4) Multi-threading and parallel processing improve performance on multi-core systems.

Using native libraries will destroy Java's platform independence, because these libraries need to be compiled separately for each operating system. 1) The native library interacts with Java through JNI, providing functions that cannot be directly implemented by Java. 2) Using native libraries increases project complexity and requires managing library files for different platforms. 3) Although native libraries can improve performance, they should be used with caution and conducted cross-platform testing.

JVM handles operating system API differences through JavaNativeInterface (JNI) and Java standard library: 1. JNI allows Java code to call local code and directly interact with the operating system API. 2. The Java standard library provides a unified API, which is internally mapped to different operating system APIs to ensure that the code runs across platforms.

modularitydoesnotdirectlyaffectJava'splatformindependence.Java'splatformindependenceismaintainedbytheJVM,butmodularityinfluencesapplicationstructureandmanagement,indirectlyimpactingplatformindependence.1)Deploymentanddistributionbecomemoreefficientwi

BytecodeinJavaistheintermediaterepresentationthatenablesplatformindependence.1)Javacodeiscompiledintobytecodestoredin.classfiles.2)TheJVMinterpretsorcompilesthisbytecodeintomachinecodeatruntime,allowingthesamebytecodetorunonanydevicewithaJVM,thusfulf


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

Dreamweaver CS6
Visual web development tools
