


Retrieving Rows from One Dataframe that are Excluded from Another
In pandas, it is common to have multiple dataframes with potentially overlapping data. One task that frequently arises is isolating rows from one dataframe that are not present in another. This operation is particularly useful when working with subsets or filtering data.
Problem Formulation:
Given two pandas dataframes, where df1 contains a superset of rows compared to df2, we aim to obtain the rows in df1 that are not found in df2. The example below illustrates this scenario with a simple case:
import pandas as pd df1 = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5], 'col2': [10, 11, 12, 13, 14]}) df2 = pd.DataFrame(data={'col1': [1, 2, 3], 'col2': [10, 11, 12]}) print(df1) print(df2) # Expected result: # col1 col2 # 3 4 13 # 4 5 14
Solution:
To effectively address this problem, we employ a technique known as a left join. This operation merges df1 and df2 while ensuring that all rows from df1 are retained. Additionally, we include an indicator column to identify the origin of each row after the merge. By leveraging the unique rows from df2 and excluding duplicates, we achieve the desired result.
The python code below implements this solution:
df_all = df1.merge(df2.drop_duplicates(), on=['col1', 'col2'], how='left', indicator=True) result = df_all[df_all['_merge'] == 'left_only']
Explanation:
- Left Join: The merge function performs a left join between df1 and df2.drop_duplicates(). This operation merges rows from df1 with rows from df2 based on the matching values in columns col1 and col2.
- Merge Indicator: The indicator parameter is set to True to include an extra column named _merge in the resulting dataframe df_all. This column indicates the origin of each row: 'both' for rows that exist in both df1 and df2, 'left_only' for rows exclusive to df1, and 'right_only' for rows exclusive to df2.
- Filter by 'left_only': To isolate rows from df1 that are not in df2, we filter the df_all dataframe by checking rows with _merge equal to 'left_only'. This gives us the desired result.
Avoiding Common Pitfalls:
It is important to note that some solutions may incorrectly check for individual column values instead of matching rows as a whole. Such approaches may lead to incorrect results, as illustrated in the example below:
~df1.col1.isin(common.col1) & ~df1.col2.isin(common.col2)
This code does not consider the joint occurrence of values in rows and may produce incorrect results when rows in df1 have values that appear individually in df2 but not in the same row.
By adopting the left join approach described above, we ensure that the derived rows are correctly identified as exclusive to df1. This technique provides a reliable and efficient solution to extracting rows that are present in one dataframe but not in another.
The above is the detailed content of How to Efficiently Extract Rows from One Pandas DataFrame that are Absent in Another?. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 English version
Recommended: Win version, supports code prompts!
