search
HomeBackend DevelopmentGolangWhy Doesn't `fmt.Println` Call My Stringer Interface Method When Using a Non-Pointer Object?

Why Doesn't `fmt.Println` Call My Stringer Interface Method When Using a Non-Pointer Object?

Why Isn't My Stringer Interface Method Getting Invoked When I Use fmt.Println?

When working with Go's Stringer interface, users may encounter situations where their String() method is not called when passing non-pointer objects to fmt.Println. To shed light on this behavior, let's examine the following code:

package main

import "fmt"

type Car struct {
    year int
    make string
}

func (c *Car) String() string {
    return fmt.Sprintf("{make:%s, year:%d}", c.make, c.year)
}

func main() {
    myCar := Car{year: 1996, make: "Toyota"}
    fmt.Println(myCar)
}

Here, we define a Car struct and implement the String() method as a value method. However, when we pass myCar as the argument to fmt.Println, the object is converted to an interface{}. This causes the fmt package to use its own default formatting, bypassing our String() method.

The key to understanding this behavior lies in the fact that we have implemented the String() method on a pointer receiver (*Car). When passing a value of type Car, the compiler does not automatically convert it to a pointer. Therefore, the fmt package cannot match our String() method to the value we passed.

Instead, to invoke our String() method when passing a non-pointer object, we need to manually convert the value to a pointer using the & operator:

fmt.Println(&myCar)

By doing so, we pass a pointer to the Car object to fmt.Println. This allows the value receiver String() method to be invoked and our custom formatting to be applied.

In summary, when working with the Stringer interface, it's important to remember that the method must be defined on the correct receiver type. For pointers, a pointer receiver is appropriate, while for value types, a value receiver can be used. If manually passing a pointer is not desirable, one can consider implementing the String() method as a pointer method on the actual Car struct.

The above is the detailed content of Why Doesn't `fmt.Println` Call My Stringer Interface Method When Using a Non-Pointer Object?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Implementing Mutexes and Locks in Go for Thread SafetyImplementing Mutexes and Locks in Go for Thread SafetyMay 05, 2025 am 12:18 AM

In Go, using mutexes and locks is the key to ensuring thread safety. 1) Use sync.Mutex for mutually exclusive access, 2) Use sync.RWMutex for read and write operations, 3) Use atomic operations for performance optimization. Mastering these tools and their usage skills is essential to writing efficient and reliable concurrent programs.

Benchmarking and Profiling Concurrent Go CodeBenchmarking and Profiling Concurrent Go CodeMay 05, 2025 am 12:18 AM

How to optimize the performance of concurrent Go code? Use Go's built-in tools such as getest, gobench, and pprof for benchmarking and performance analysis. 1) Use the testing package to write benchmarks to evaluate the execution speed of concurrent functions. 2) Use the pprof tool to perform performance analysis and identify bottlenecks in the program. 3) Adjust the garbage collection settings to reduce its impact on performance. 4) Optimize channel operation and limit the number of goroutines to improve efficiency. Through continuous benchmarking and performance analysis, the performance of concurrent Go code can be effectively improved.

Error Handling in Concurrent Go Programs: Avoiding Common PitfallsError Handling in Concurrent Go Programs: Avoiding Common PitfallsMay 05, 2025 am 12:17 AM

The common pitfalls of error handling in concurrent Go programs include: 1. Ensure error propagation, 2. Processing timeout, 3. Aggregation errors, 4. Use context management, 5. Error wrapping, 6. Logging, 7. Testing. These strategies help to effectively handle errors in concurrent environments.

Implicit Interface Implementation in Go: The Power of Duck TypingImplicit Interface Implementation in Go: The Power of Duck TypingMay 05, 2025 am 12:14 AM

ImplicitinterfaceimplementationinGoembodiesducktypingbyallowingtypestosatisfyinterfaceswithoutexplicitdeclaration.1)Itpromotesflexibilityandmodularitybyfocusingonbehavior.2)Challengesincludeupdatingmethodsignaturesandtrackingimplementations.3)Toolsli

Go Error Handling: Best Practices and PatternsGo Error Handling: Best Practices and PatternsMay 04, 2025 am 12:19 AM

In Go programming, ways to effectively manage errors include: 1) using error values ​​instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values ​​for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

How do you implement concurrency in Go?How do you implement concurrency in Go?May 04, 2025 am 12:13 AM

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Building Concurrent Data Structures in GoBuilding Concurrent Data Structures in GoMay 04, 2025 am 12:09 AM

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Comparing Go's Error Handling to Other Programming LanguagesComparing Go's Error Handling to Other Programming LanguagesMay 04, 2025 am 12:09 AM

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Atom editor mac version download

Atom editor mac version download

The most popular open source editor