


Pivoting a Dataframe in Pandas
The task involves transposing a data table in CSV format, where the "Indicator" column values become the new columns. The desired result is a flattened format where rows are defined by 'Country' and 'Year', and columns are 'Indicator' values.
Using .pivot
To achieve the pivot operation, one can utilize the .pivot method as follows:
out = df.pivot(index=['Country', 'Year'], columns='Indicator', values='Value')
This method rearranges the data such that the 'Country' and 'Year' become the row indices and the 'Indicator' values become the columns. The resulting 'out' variable holds the pivoted data.
To return the data to a flat table format, one can use .rename_axis to eliminate the 'Indicator' label from columns and use .reset_index to restore 'Country' and 'Year' as columns.
print(out.rename_axis(columns=None).reset_index())
This produces a flattened table with 'Country', 'Year', and 'Indicator' values as columns.
Using .pivot_table
In case of duplicate 'Country', 'Year', and 'Indicator' combinations in the original dataset, .pivot_table can be employed. It performs aggregation (mean by default) on duplicate values.
out = df.pivot_table( index=['Country', 'Year'], columns='Indicator', values='Value') print(out.rename_axis(columns=None).reset_index())
This approach results in a flattened table where duplicate values are averaged and the 'Indicator' label is omitted from columns.
Relevant Documentation
For further details on reshaping and pivot tables in Pandas, refer to the following resources:
- Reshaping and pivot tables user guide
- Pandas documentation: Reshaping and Pivoting
The above is the detailed content of How do I transform a data table in Pandas with the 'Indicator' column values becoming new columns?. For more information, please follow other related articles on the PHP Chinese website!

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
