


How to Append a New DataFrame to an Existing Excel Sheet in Python Using Pandas?
Append Existing Excel Sheet with New Dataframe Using Python Pandas
In this article, we will explore how to append a new dataframe to an existing Excel spreadsheet using Python Pandas.
Problem:
Appending a new dataframe to an existing Excel sheet using the Pandas to_excel() function overwrites the existing data. The goal is to append the new data to the end of the current sheet, maintaining the existing content.
Solution:
To address this issue, we can leverage the following steps:
-
Load the Existing Workbook:
- Use the openpyxl package to load the existing Excel workbook.
- Save the existing sheet names in a list.
-
Prepare the New Dataframe:
- Remove any unnecessary rows or columns from the new dataframe.
-
Create a New Workbook Writer:
- Create an ExcelWriter object using Pandas, specifying the existing workbook as an output.
- Set engine to "openpyxl", mode to "a", and if_sheet_exists to "new" if the existing sheet doesn't exist.
-
Write the New Dataframe:
- Write the new dataframe to the new sheet created by the ExcelWriter.
- Adjust the cell formatting as needed.
-
Copy Cells from New to Existing Sheet:
- Since Pandas does not support in-place appending, we use openpyxl to copy the cells from the new sheet to the existing sheet, starting at the end of the existing data.
-
Remove the New Sheet:
- After copying the data, remove the new sheet that was created for writing the new dataframe.
-
Save and Close the Workbook:
- Save the workbook and close it.
Example:
import pandas as pd import openpyxl from openpyxl.utils import get_column_letter # Load existing workbook workbook = openpyxl.load_workbook("existing_excel.xlsx") sheet_names = workbook.sheetnames # Prepare new dataframe new_df = pd.DataFrame({ "Name": ["Alice", "Bob", "Carol"], "Age": [25, 30, 35] }) # Create new workbook writer with pd.ExcelWriter("existing_excel.xlsx", engine="openpyxl", mode="a", if_sheet_exists="new") as writer: # Write new dataframe new_df.to_excel(writer, sheet_name="NewData", index=False) # Get worksheet objects new_sheet = writer.sheets["NewData"] existing_sheet = workbook["ExistingData"] # Get last row in existing sheet last_row = existing_sheet.max_row # Copy cells from new sheet to existing sheet copy_excel_cell_range( src_ws=new_sheet, tgt_ws=existing_sheet, src_min_row=2, src_max_row=new_sheet.max_row, tgt_min_row=last_row + 1, with_style=True ) # Remove temporary sheet workbook.remove(new_sheet) # Save and close workbook.save("existing_excel.xlsx")
By following this approach, you can seamlessly append new data to an existing Excel sheet without overwriting the existing content.
The above is the detailed content of How to Append a New DataFrame to an Existing Excel Sheet in Python Using Pandas?. For more information, please follow other related articles on the PHP Chinese website!

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

Pythonisnotpurelyinterpreted;itusesahybridapproachofbytecodecompilationandruntimeinterpretation.1)Pythoncompilessourcecodeintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).2)Thisprocessallowsforrapiddevelopmentbutcanimpactperformance,req

ToconcatenatelistsinPythonwiththesameelements,use:1)the operatortokeepduplicates,2)asettoremoveduplicates,or3)listcomprehensionforcontroloverduplicates,eachmethodhasdifferentperformanceandorderimplications.

Pythonisaninterpretedlanguage,offeringeaseofuseandflexibilitybutfacingperformancelimitationsincriticalapplications.1)InterpretedlanguageslikePythonexecuteline-by-line,allowingimmediatefeedbackandrapidprototyping.2)CompiledlanguageslikeC/C transformt

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver CS6
Visual web development tools
