Home >Backend Development >Python Tutorial >How to Flatten a Pandas GroupBy MultiIndex DataFrame?

How to Flatten a Pandas GroupBy MultiIndex DataFrame?

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-02 00:01:09439browse

How to Flatten a Pandas GroupBy MultiIndex DataFrame?

Converting a Pandas GroupBy MultiIndex Output Back to a DataFrame

When performing a groupby operation on a pandas DataFrame with multiple index columns, the resulting object is a DataFrame with a hierarchical index. This can be inconvenient if you want to access the data as individual rows.

Here's a simple example:

df1 = pd.DataFrame({"City": ["Seattle", "Seattle", "Portland", "Seattle", "Seattle", "Portland"], "Name": ["Alice", "Bob", "Mallory", "Mallory", "Bob", "Mallory"]})

g1 = df1.groupby(["Name", "City"]).count()

The output of g1 is a DataFrame with a hierarchical index:

                  City  Name
Name    City
Alice   Seattle      1     1
Bob     Seattle      2     2
Mallory Portland     2     2
        Seattle      1     1

To convert this back to a DataFrame with individual rows, you can use either the add_suffix and reset_index methods:

g1.add_suffix("_Count").reset_index()

This will add a suffix to the index columns and reset the index to create a flat DataFrame:

      Name      City  City_Count  Name_Count
0    Alice   Seattle           1           1
1      Bob   Seattle           2           2
2  Mallory  Portland           2           2
3  Mallory   Seattle           1           1

Or, you can use the size method and reset_index to count the number of rows in each group and create a new DataFrame:

DataFrame({'count': df1.groupby(["Name", "City"]).size()}).reset_index()

This will create a DataFrame with a single index column:

      Name      City  count
0    Alice   Seattle      1
1      Bob   Seattle      2
2  Mallory  Portland      2
3  Mallory   Seattle      1

Which approach you use will depend on your specific needs.

The above is the detailed content of How to Flatten a Pandas GroupBy MultiIndex DataFrame?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn