search
HomeBackend DevelopmentC++How Can I Efficiently Handle Non-Integer Constants in a C/C Switch Statement?

How Can I Efficiently Handle Non-Integer Constants in a C/C   Switch Statement?

Switch with Non-Integer Constants in C/C

When working with non-POD (Plain Old Data) constants, it becomes necessary to select between different code paths based on the value of the constant. However, the traditional switch statement only accepts integer values. This presents a challenge for selecting between non-integer constants.

Traditional Approach: Nested if Statements

A simple way to handle this is to use a series of nested if statements, such as:

if( str == "foo" )      ...
else if( str == "bar" ) ...
else                    ...

While this is straightforward, it can become cumbersome and inefficient for large numbers of cases, as it has O(n) complexity where "n" is the number of cases.

Advanced Techniques

To achieve better efficiency, more advanced techniques can be employed. One approach involves using data structures like maps to represent strings as integers and then using a standard switch statement. However, this introduces additional coding complexity.

Compile-Time Magic: Macro and Template Magic

A unique approach is to use macro and template magic to generate an unrolled binary search at compile time. Libraries like fastmatch.h can provide a clean syntax for defining case matches:

NEWMATCH
MATCH("asd")
  some c++ code
MATCH("bqr")
  ... the buffer for the match is in _buf
MATCH("zzz")
  ...  user.YOURSTUFF 
/*ELSE 
  optional
*/
ENDMATCH(xy_match)

This generates a function like xy_match(char *&_buf, T &user) that can be called with ease.

C 11 Updates: Lambdas and Initializer List

With C 11, lambdas and initializer lists provide a cleaner solution:

Switch("ger", {
    {"asdf", []{ printf("0\n"); }},
    {"bde", []{ printf("1\n"); }},
    {"ger", []{ printf("2\n"); }}
}, [](const char *a, const char *b) { return strcmp(a, b) <p>This approach utilizes a binary search on a sorted list of case matches, providing efficient O(log n) complexity.</p><p><strong>Compile-Time Trie</strong></p><p>As a further advancement, compile-time tries can be leveraged to handle unsorted case-branches. This approach uses advanced C  11 metaprogramming to generate a search trie at compile time. Each trie node contains a switch statement to optimize code generation.</p><p>The implementation can be found on GitHub at smilingthax/cttrie.</p>

The above is the detailed content of How Can I Efficiently Handle Non-Integer Constants in a C/C Switch Statement?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How does the C   Standard Template Library (STL) work?How does the C Standard Template Library (STL) work?Mar 12, 2025 pm 04:50 PM

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?How do I use algorithms from the STL (sort, find, transform, etc.) efficiently?Mar 12, 2025 pm 04:52 PM

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

How does dynamic dispatch work in C   and how does it affect performance?How does dynamic dispatch work in C and how does it affect performance?Mar 17, 2025 pm 01:08 PM

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

How do I use ranges in C  20 for more expressive data manipulation?How do I use ranges in C 20 for more expressive data manipulation?Mar 17, 2025 pm 12:58 PM

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

How do I handle exceptions effectively in C  ?How do I handle exceptions effectively in C ?Mar 12, 2025 pm 04:56 PM

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

How do I use move semantics in C   to improve performance?How do I use move semantics in C to improve performance?Mar 18, 2025 pm 03:27 PM

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

How do I use rvalue references effectively in C  ?How do I use rvalue references effectively in C ?Mar 18, 2025 pm 03:29 PM

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

How does C  's memory management work, including new, delete, and smart pointers?How does C 's memory management work, including new, delete, and smart pointers?Mar 17, 2025 pm 01:04 PM

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software