Efficient Implementation of log2(__m256d) in AVX2
Introduction
Logarithmic calculations are essential in various scientific and engineering applications. This article explores the implementation of an efficient log2() function for 4-element double-precision floating-point vectors using Advanced Vector Extensions 2 (AVX2).
__m256d log2_pd Intrinsic in SVML
Intel's Scalable Vector Math Library (SVML) provides an intrinsic function __m256d _mm256_log2_pd (__m256d a) for performing log2 operations on 4-bit vectors. However, this intrinsic is only available in Intel compilers and is reported to have performance drawbacks on AMD processors.
Polynomial Approximation
To implement log2() without relying on compiler-specific intrinsics, we can leverage polynomial approximations. We can express log2(x) as a Taylor series expanded around x = 1, or more specifically, we can use multiple polynomial terms to approximate log2(mantissa) in the range of [1.0, 2.0].
Implementation Details
The following C implementation provides a highly efficient log2() function for 4-bit double-precision vectors using AVX2 and a custom polynomial approximation:
__m256d __vectorcall Log2(__m256d x) { // Extract exponent and normalize it // Calculate t=(y-1)/(y+1) and t**2 // Calculate log2(y) and add exponent return log2_x; }
The approximation formula used can be visualized as:
The polynomial coefficients were fitted to minimize the maximum absolute error over the range [1.0, 2.0].
Performance Analysis
Benchmarks show that this implementation outperforms both std::log2() and std::log() by a significant margin, achieving around 4 times the performance of std::log2().
Limitations and Considerations
The accuracy of the implementation can be tailored by adding more polynomial terms. However, increasing the polynomial order will increase the number of floating-point operations and potentially reduce performance.
Conclusion
The provided AVX2 implementation of log2() offers high efficiency and performance for vectorized logarithmic calculations. By leveraging custom polynomial approximations, this function provides a portable and efficient solution for log2 operations on 4-bit double-precision floating-point vectors.
The above is the detailed content of How Can AVX2 Be Used to Efficiently Implement log2(__m256d)?. For more information, please follow other related articles on the PHP Chinese website!

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
