Home >Backend Development >Python Tutorial >How Can I Perform Custom Sorting of Pandas DataFrame Columns Using a Dictionary?

How Can I Perform Custom Sorting of Pandas DataFrame Columns Using a Dictionary?

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-11-27 12:22:10370browse

How Can I Perform Custom Sorting of Pandas DataFrame Columns Using a Dictionary?

Custom Sorting in Pandas DataFrame

Custom sorting in Pandas allows you to rearrange the rows of a DataFrame based on a specified order or criterion. When a DataFrame contains a column with values that need to be sorted according to a custom mapping, such as converting month names to numerical indices, you can leverage custom sorting techniques provided by Pandas.

Solution for Custom Sorting Using a Dictionary:

To achieve custom sorting using a dictionary, follow these steps:

  1. Create a Pandas DataFrame with the desired column containing month names.
  2. Create a dictionary that maps the month names to their corresponding numerical indices, e.g. custom_dict = {'March':0, 'April':1, 'Dec':3}.
  3. Apply the apply() function to the column, using a lambda function to map each month name to its index using the dictionary, e.g. df['m'].apply(lambda x: custom_dict[x]).
  4. Sort the DataFrame by the intermediate series created in step 3, e.g. df.sort_values('intermediary_series').

Example:

import pandas as pd

# Custom dictionary mapping month names to indices
custom_dict = {'March':0, 'April':1, 'Dec':3}

# Create a DataFrame with a column containing month names
df = pd.DataFrame([[1, 2, 'March'],[5, 6, 'Dec'],[3, 4, 'April']], columns=['a','b','m'])

# Apply the custom sorting
df['intermediary_series'] = df['m'].apply(lambda x: custom_dict[x])
df.sort_values('intermediary_series')

This approach allows you to sort the DataFrame based on the desired order specified in the custom dictionary.

The above is the detailed content of How Can I Perform Custom Sorting of Pandas DataFrame Columns Using a Dictionary?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn