Home >Web Front-end >JS Tutorial >Ollama-OCR for High-Precision OCR with Ollama
Llama 3.2-Vision is a multimodal large language model available in 11B and 90B sizes, capable of processing both text and image inputs to generate text outputs. The model excels in visual recognition, image reasoning, image description, and answering image-related questions, outperforming existing open-source and closed-source multimodal models across multiple industry benchmarks.
In this article I will describe how to call the Llama 3.2-Vision 11B modeling service run by Ollama and implement image text recognition (OCR) functionality using Ollama-OCR.
? High accuracy text recognition using Llama 3.2-Vision model
? Preserves original text formatting and structure
?️ Supports multiple image formats: JPG, JPEG, PNG
⚡️ Customizable recognition prompts and models
? Markdown output format option
? Robust error handling
Before you can start using Llama 3.2-Vision, you need to install Ollama, a platform that supports running multimodal models locally. Follow the steps below to install it:
After installing Ollama, you can install the Llama 3.2-Vision 11B model with the following command:
ollama run llama3.2-vision
npm install ollama-ocr # or using pnpm pnpm add ollama-ocr
Code
import { ollamaOCR, DEFAULT_OCR_SYSTEM_PROMPT } from "ollama-ocr"; async function runOCR() { const text = await ollamaOCR({ filePath: "./handwriting.jpg", systemPrompt: DEFAULT_OCR_SYSTEM_PROMPT, }); console.log(text); }
Input Image:
Output:
The Llama 3.2-Vision collection of multimodal large language models (LLMs) is a collection of instruction-tuned image reasoning generative models in 118 and 908 sizes (text images in / text out). The Llama 3.2-Vision instruction-tuned models are optimized for visual recognition, image reasoning, captioning, and answering general questions about an image. The models outperform many of the available open source and closed multimodal models on common industry benchmarks.
import { ollamaOCR, DEFAULT_MARKDOWN_SYSTEM_PROMPT } from "ollama-ocr"; async function runOCR() { const text = await ollamaOCR({ filePath: "./trader-joes-receipt.jpg", systemPrompt: DEFAULT_MARKDOWN_SYSTEM_PROMPT, }); console.log(text); }
Input Image:
Output:
ollama-ocr is using a local vision model, if you want to use the online Llama 3.2-Vision model, try the llama-ocr library.
The above is the detailed content of Ollama-OCR for High-Precision OCR with Ollama. For more information, please follow other related articles on the PHP Chinese website!