Atomic Floating-Point Operations and SSE/AVX Vector Load/Store on x86_64
Although C 11 supports lock-free std::atomic
Atomic Operations on x86_64
x86_64 supports the following atomic operations on doubles, performed using lock-free instructions:
- Load
- Store
- Add
- Subtract
- Multiply
Atomic Vector Operations on x86_64
Unfortunately, there is no way to guarantee the atomicity of 128b or 256b vector stores or loads across the cache coherency system. However, for aligned vectors, you can safely use vector loads and stores on shared double arrays without risk of tearing.
If atomic 16B loads are required, your only option is to use lock cmpxchg16b with desired=expected. if it succeeds, it replaces the existing value with itself. If it fails, you get the old contents. Note that this "load" faults on read-only memory, so use caution when passing pointers to functions that perform this operation.
Atomic 16B stores and RMW can both use lock cmpxchg16b in the obvious way. This makes pure stores much more expensive than regular vector stores, especially with multiple cmpxchg16b retries. However, atomic RMW is already expensive.
Limitations of Atomic Vector Operations
- atomic<__m128d> would be slow even for read-only or write-only operations due to the use of cmpxchg16b.
- atomic<__m256d> cannot be lock-free.
- alignas(64) atomic
shared_buffer[1024]; would allow auto-vectorization, but compilers do not generate efficient asm for this.
Atomically Reading and Updating 16B Objects
You can atomically update 16B objects but read the 8B halves separately. However, compilers do not provide a clean way to express this, and inlining cmpxchg16b is unreliable due to ongoing considerations by compiler developers.
The above is the detailed content of Does x86_64 Support Atomic Operations on Doubles and SSE/AVX Vectors?. For more information, please follow other related articles on the PHP Chinese website!

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Zend Studio 13.0.1
Powerful PHP integrated development environment
