I'm a programmer and a Formula 1 fan. When I started playing F1's fantasy league, my mind naturally went to algorithms.
The goal in the F1 fantasy game is to pick 5 drivers and 2 teams, while staying under a price cap, that based on race performance, scores a maximum number of points. This sounds like a fairly traditional computer science optimization problem with constraints, right?
More precisely, for any historical window of races, we can use Linear Programming, to find an optimal team. Strictly speaking, this solution is to a simplified version of the game (the real game lets you make changes to your team week to week, as well as has some wildcard factors), but is a useful starting point nonetheless.
Putting together our capability required minimal dependencies:
- data: we grab points/prices data from the excellent F1 Fantasy Tools site
- linear programming library: we use glpk.js, which is a JavaScript/WebAssembly port of the old trusty GLPK solver
- platform: we use GitHub pages, where our code is open sourced under the MIT License and can be found here
The current capability has a simple interface, as shown in this screenshot.
The crux of the capability is the behinds-the-scenes construction of the linear programs, which are then fed to the glpk.js solver running in your browser. Here is an actual linear program constructed by our tool (with many lines omitted).
{ "name": "LP", "objective": { "direction": 2, "name": "obj", "vars": [ { "name": "VER", "coef": 593 }, { "name": "OCO", "coef": 112 }, [...18 additional drivers, omitted for brevity] { "name": "AST", "coef": 360 }, [...9 additional teams, omitted for brevity] ] }, "subjectTo": [ { "name": "cons1", "vars": [ { "name": "VER", "coef": 30 }, { "name": "NOR", "coef": 23 }, [...18 additional drivers, omitted for brevity] { "name": "MCL", "coef": 23.2 }, [...9 additional teams, omitted for brevity] ], "bnds": { "type": 3, "ub": 100, "lb": 0 } }, { "name": "cons2", "vars": [ { "name": "VER", "coef": 1 }, { "name": "OCO", "coef": 1 }, [...18 additional drivers, omitted for brevity] ], "bnds": { "type": 5, "ub": 5, "lb": 5 } }, { "name": "cons3", "vars": [ { "name": "RED", "coef": 1 }, [...9 additional teams, omitted for brevity] Show quoted text [...18 additional drivers, omitted for brevity] { "name": "cons29", "vars": [ { "name": "FER", "coef": 1 } ], "bnds": { "type": 4, "ub": 1, "lb": 0 } }, [...9 additional teams, omitted for brevity] ], "generals": [ "VER", "OCO", [...18 additional drivers, omitted for brevity] "ALP", [...9 additional teams, omitted for brevity] ] }
For those unfamiliar with the F1 naming colloquialism, drivers are referred to by the first three letters of their surname (e.g. VER is Max Verstappen), and teams each have a 3 letter mnemonic (e.g. AST is Aston Martin Motorsports).
And so in these linear programs, there is a variable per driver (named with their three letter code) and a variable per team, which must take the value of 1 (on your fantasy team) or 0 (not on your fantasy team). And the objective of the linear program is to maximize points, subject to the sum of the price not exceeding the budget threshold, and also subject to the constraint that the sum of the driver variables is 5, and the team variables is 2. Very straightforward!
A nuance is that you get to choose a "2x driver," who scores twice the points they earned that week. To accommodate this nuance, we generate 20 separate linear programs (each taking a different driver as the 2x), and run glpk.js on each of those 20 programs, to find the one with maximum points.
Disclaimer: we have no affiliation to Formula One (or any of their companies or brands). The author of this capability is simply a fan who enjoys playing the fantasy game. This information is provided with no guarantees as to its' accuracy, use at your own risk.'
The above is the detailed content of Evaluating (Historically Optimal) Fantasy Feams with Linear Programming. For more information, please follow other related articles on the PHP Chinese website!

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

Python is more suitable for data science and machine learning, while JavaScript is more suitable for front-end and full-stack development. 1. Python is known for its concise syntax and rich library ecosystem, and is suitable for data analysis and web development. 2. JavaScript is the core of front-end development. Node.js supports server-side programming and is suitable for full-stack development.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),