I'm a programmer and a Formula 1 fan. When I started playing F1's fantasy league, my mind naturally went to algorithms.
The goal in the F1 fantasy game is to pick 5 drivers and 2 teams, while staying under a price cap, that based on race performance, scores a maximum number of points. This sounds like a fairly traditional computer science optimization problem with constraints, right?
More precisely, for any historical window of races, we can use Linear Programming, to find an optimal team. Strictly speaking, this solution is to a simplified version of the game (the real game lets you make changes to your team week to week, as well as has some wildcard factors), but is a useful starting point nonetheless.
Putting together our capability required minimal dependencies:
- data: we grab points/prices data from the excellent F1 Fantasy Tools site
- linear programming library: we use glpk.js, which is a JavaScript/WebAssembly port of the old trusty GLPK solver
- platform: we use GitHub pages, where our code is open sourced under the MIT License and can be found here
The current capability has a simple interface, as shown in this screenshot.
The crux of the capability is the behinds-the-scenes construction of the linear programs, which are then fed to the glpk.js solver running in your browser. Here is an actual linear program constructed by our tool (with many lines omitted).
{ "name": "LP", "objective": { "direction": 2, "name": "obj", "vars": [ { "name": "VER", "coef": 593 }, { "name": "OCO", "coef": 112 }, [...18 additional drivers, omitted for brevity] { "name": "AST", "coef": 360 }, [...9 additional teams, omitted for brevity] ] }, "subjectTo": [ { "name": "cons1", "vars": [ { "name": "VER", "coef": 30 }, { "name": "NOR", "coef": 23 }, [...18 additional drivers, omitted for brevity] { "name": "MCL", "coef": 23.2 }, [...9 additional teams, omitted for brevity] ], "bnds": { "type": 3, "ub": 100, "lb": 0 } }, { "name": "cons2", "vars": [ { "name": "VER", "coef": 1 }, { "name": "OCO", "coef": 1 }, [...18 additional drivers, omitted for brevity] ], "bnds": { "type": 5, "ub": 5, "lb": 5 } }, { "name": "cons3", "vars": [ { "name": "RED", "coef": 1 }, [...9 additional teams, omitted for brevity] Show quoted text [...18 additional drivers, omitted for brevity] { "name": "cons29", "vars": [ { "name": "FER", "coef": 1 } ], "bnds": { "type": 4, "ub": 1, "lb": 0 } }, [...9 additional teams, omitted for brevity] ], "generals": [ "VER", "OCO", [...18 additional drivers, omitted for brevity] "ALP", [...9 additional teams, omitted for brevity] ] }
For those unfamiliar with the F1 naming colloquialism, drivers are referred to by the first three letters of their surname (e.g. VER is Max Verstappen), and teams each have a 3 letter mnemonic (e.g. AST is Aston Martin Motorsports).
And so in these linear programs, there is a variable per driver (named with their three letter code) and a variable per team, which must take the value of 1 (on your fantasy team) or 0 (not on your fantasy team). And the objective of the linear program is to maximize points, subject to the sum of the price not exceeding the budget threshold, and also subject to the constraint that the sum of the driver variables is 5, and the team variables is 2. Very straightforward!
A nuance is that you get to choose a "2x driver," who scores twice the points they earned that week. To accommodate this nuance, we generate 20 separate linear programs (each taking a different driver as the 2x), and run glpk.js on each of those 20 programs, to find the one with maximum points.
Disclaimer: we have no affiliation to Formula One (or any of their companies or brands). The author of this capability is simply a fan who enjoys playing the fantasy game. This information is provided with no guarantees as to its' accuracy, use at your own risk.'
The above is the detailed content of Evaluating (Historically Optimal) Fantasy Feams with Linear Programming. For more information, please follow other related articles on the PHP Chinese website!

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
