Home >Backend Development >Python Tutorial >How to Efficiently Get the Top N Records within Each Group of a Pandas DataFrame?
Get Topmost n Records within Each Group in DataFrame
To obtain the top n records for each group in a DataFrame, consider utilizing Pandas' efficient methods. Suppose we have the following DataFrame with 'id' and 'value' columns:
df = pd.DataFrame({'id': [1, 1, 1, 2, 2, 2, 2, 3, 4], 'value': [1, 2, 3, 1, 2, 3, 4, 1, 1]})
Using the groupby() and head() functions, we can retrieve the top 2 records for each 'id':
df_top2 = df.groupby('id').head(2)
Output:
id value id 1 0 1 1 1 1 2 2 3 2 1 4 2 2 3 7 3 1 4 8 4 1
To flatten the MultiIndex and eliminate duplicate row indices, apply reset_index():
df_top2 = df.groupby('id').head(2).reset_index(drop=True)
Result:
id value 0 1 1 1 1 2 2 2 1 3 2 2 4 3 1 5 4 1
Alternatively, if the records need to be ordered before selecting the top n for each group, apply sorting first:
df_sorted = df.sort_values('value', ascending=False) df_top2 = df_sorted.groupby('id').head(2)
This provides a more efficient and elegant approach to obtain the top records within each group in a DataFrame.
The above is the detailed content of How to Efficiently Get the Top N Records within Each Group of a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!