Parsing Integers as Integers and Floats as Floats in JSON Using Golang
In a Golang application that receives a stream of JSON records for forwarding to a data store (InfluxDB), it's crucial to preserve the original data type of integer and float values to avoid type conflicts and ensure successful write operations. While the Ruby JSON parser effortlessly performs this task, the encoding/json package in Golang initially parses all numbers as floats, potentially leading to type mismatch and write failures.
A Workaround Using Custom JSON Values
To replicate the behavior of the Ruby JSON parser, one approach is to utilize the generic Go mechanism for custom JSON values. In this method, JSON numbers are represented as byte arrays (json.RawMessage) and parsed using strconv.ParseInt and strconv.ParseFloat. This allows for accurate conversion of integers and floats:
import ( "encoding/json" "fmt" "strconv" ) func main() { str := `{"a":123,"b":12.3,"c":"123","d":"12.3","e":true}` var raw map[string]json.RawMessage err := json.Unmarshal([]byte(str), &raw) if err != nil { panic(err) } parsed := make(map[string]interface{}, len(raw)) for key, val := range raw { s := string(val) i, err := strconv.ParseInt(s, 10, 64) if err == nil { parsed[key] = i continue } f, err := strconv.ParseFloat(s, 64) if err == nil { parsed[key] = f continue } var v interface{} err = json.Unmarshal(val, &v) if err == nil { parsed[key] = v continue } parsed[key] = val } for key, val := range parsed { fmt.Printf("%T: %v %v\n", val, key, val) } }
Output:
int64: a 123 float64: b 12.3 string: c 123 string: d 12.3 bool: e true
Using the json.Number Type
An alternative approach involves using the Go json.Number type, which allows for efficient parsing of both integers and floats directly from the JSON data:
import ( "encoding/json" "fmt" "strings" ) func main() { str := `{"a":123,"b":12.3,"c":"123","d":"12.3","e":true}` var parsed map[string]interface{} d := json.NewDecoder(strings.NewReader(str)) d.UseNumber() err := d.Decode(&parsed) if err != nil { panic(err) } for key, val := range parsed { n, ok := val.(json.Number) if !ok { continue } if i, err := n.Int64(); err == nil { parsed[key] = i continue } if f, err := n.Float64(); err == nil { parsed[key] = f continue } } for key, val := range parsed { fmt.Printf("%T: %v %v\n", val, key, val) } }
Output:
int64: a 123 float64: b 12.3 string: c 123 string: d 12.3 bool: e true
These methods provide effective solutions for preserving the original data type of integers and floats during JSON parsing in Golang, ensuring accurate and reliable data handling.
The above is the detailed content of How Can I Parse Integers and Floats Accurately from JSON in Golang?. For more information, please follow other related articles on the PHP Chinese website!

In Go, using mutexes and locks is the key to ensuring thread safety. 1) Use sync.Mutex for mutually exclusive access, 2) Use sync.RWMutex for read and write operations, 3) Use atomic operations for performance optimization. Mastering these tools and their usage skills is essential to writing efficient and reliable concurrent programs.

How to optimize the performance of concurrent Go code? Use Go's built-in tools such as getest, gobench, and pprof for benchmarking and performance analysis. 1) Use the testing package to write benchmarks to evaluate the execution speed of concurrent functions. 2) Use the pprof tool to perform performance analysis and identify bottlenecks in the program. 3) Adjust the garbage collection settings to reduce its impact on performance. 4) Optimize channel operation and limit the number of goroutines to improve efficiency. Through continuous benchmarking and performance analysis, the performance of concurrent Go code can be effectively improved.

The common pitfalls of error handling in concurrent Go programs include: 1. Ensure error propagation, 2. Processing timeout, 3. Aggregation errors, 4. Use context management, 5. Error wrapping, 6. Logging, 7. Testing. These strategies help to effectively handle errors in concurrent environments.

ImplicitinterfaceimplementationinGoembodiesducktypingbyallowingtypestosatisfyinterfaceswithoutexplicitdeclaration.1)Itpromotesflexibilityandmodularitybyfocusingonbehavior.2)Challengesincludeupdatingmethodsignaturesandtrackingimplementations.3)Toolsli

In Go programming, ways to effectively manage errors include: 1) using error values instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

Notepad++7.3.1
Easy-to-use and free code editor

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use
