Is C Templates Turing-complete?
A widely circulated claim is that C templates are Turing-complete at compile time. This means that templates can be used to represent and execute any computable function.
Example of a Computation
Here's a non-trivial example of a turing machine implemented in C 11 using templates:
#include <iostream> template<bool c typename a b> struct Conditional { typedef A type; }; template<typename a typename b> struct Conditional<false a b> { typedef B type; }; template<typename...> struct ParameterPack; template<bool c typename="void"> struct EnableIf { }; template<typename type> struct EnableIf<true type> { typedef Type type; }; template<typename t> struct Identity { typedef T type; }; // define a type list template<typename...> struct TypeList; template<typename t typename... tt> struct TypeList<t tt...> { typedef T type; typedef TypeList<tt...> tail; }; template struct TypeList> { }; template<typename list> struct GetSize; template<typename... items> struct GetSize<typelist>> { enum { value = sizeof...(Items) }; }; template<typename... t> struct ConcatList; template<typename... first typename... second tail> struct ConcatList<typelist>, TypeList<second...>, Tail...> { typedef typename ConcatList<typelist second...>, Tail...>::type type; }; template<typename t> struct ConcatList<t> { typedef T type; }; template<typename newitem typename list> struct AppendItem; template<typename newitem typename...items> struct AppendItem<newitem typelist>> { typedef TypeList<items... newitem> type; }; template<typename newitem typename list> struct PrependItem; template<typename newitem typename...items> struct PrependItem<newitem typelist>> { typedef TypeList<newitem items...> type; }; template<typename list int n typename="void"> struct GetItem { static_assert(N > 0, "index cannot be negative"); static_assert(GetSize<list>::value > 0, "index too high"); typedef typename GetItem<typename list::tail n-1>::type type; }; template<typename list> struct GetItem<list> { static_assert(GetSize<list>::value > 0, "index too high"); typedef typename List::type type; }; template<typename list template typename...> class Matcher, typename... Keys> struct FindItem { static_assert(GetSize<list>::value > 0, "Could not match any item."); typedef typename List::type current_type; typedef typename Conditional<matcher keys...>::value, Identity<current_type>, FindItem<typename list::tail matcher keys...>> ::type::type type; }; template<typename list int i typename newitem> struct ReplaceItem { static_assert(I > 0, "index cannot be negative"); static_assert(GetSize<list>::value > 0, "index too high"); typedef typename PrependItem<typename list::type typename replaceitem list::tail i-1 newitem>::type> ::type type; }; template<typename newitem typename type typename... t> struct ReplaceItem<typelist t...>, 0, NewItem> { typedef TypeList<newitem t...> type; }; enum Direction { Left = -1, Right = 1 }; template<typename oldstate typename input newstate output direction move> struct Rule { typedef OldState old_state; typedef Input input; typedef NewState new_state; typedef Output output; static Direction const direction = Move; }; template<typename a typename b> struct IsSame { enum { value = false }; }; template<typename a> struct IsSame<a a> { enum { value = true }; }; template<typename input typename state int position> struct Configuration { typedef Input input; typedef State state; enum { position = Position }; }; template<int a int b> struct Max { enum { value = A > B ? A : B }; }; template<int n> struct State { enum { value = n }; static char const * name; }; template<int n> char const* State<n>::name = "unnamed"; struct QAccept { enum { value = -1 }; static char const* name; }; struct QReject { enum { value = -2 }; static char const* name; }; #define DEF_STATE(ID, NAME) \ typedef State<id> NAME ; \ NAME :: name = #NAME ; template<int n> struct Input { enum { value = n }; static char const * name; template<int... i> struct Generate { typedef TypeList<input>...> type; }; }; template<int n> char const* Input<n>::name = "unnamed"; typedef Input InputBlank; #define DEF_INPUT(ID, NAME) \ typedef Input<id> NAME ; \ NAME :: name = #NAME ; template<typename config typename transitions> struct Controller { typedef Config config; enum { position = config::position }; typedef typename Conditional(GetSize<typename config::input>::value) (position), AppendItem<inputblank typename config::input>, Identity<typename config::input>>::type::type input; typedef typename config::state state; typedef typename GetItem<input position>::type cell; template<typename item typename state cell> struct Matcher { typedef typename Item::old_state checking_state; typedef typename Item::input checking_input; enum { value = IsSame<state checking_state>::value && IsSame<cell checking_input>::value }; }; typedef typename FindItem<transitions matcher state cell>::type rule; typedef typename ReplaceItem<input position typename rule::output>::type new_input; typedef typename rule::new_state new_state; typedef Configuration<new_input new_state max rule::direction>::value> new_config; typedef Controller<new_config transitions> next_step; typedef typename next_step::end_config end_config; typedef typename next_step::end_input end_input; typedef typename next_step::end_state end_state; enum { end_position = next_step::position }; }; template<typename input typename state int position transitions> struct Controller<configuration state position>, Transitions, typename EnableIf<issame qaccept>::value || IsSame<state qreject>::value>::type> { typedef Configuration<input state position> config; enum { position = config::position }; typedef typename Conditional(GetSize<typename config::input>::value) (position), AppendItem<inputblank typename config::input>, Identity<typename config::input>>::type::type input; typedef typename config::state state; typedef config end_config; typedef input end_input; typedef state end_state; enum { end_position = position }; }; template<typename input typename transitions startstate> struct TuringMachine { typedef Input input; typedef Transitions transitions; typedef StartState start_state; </typename></typename></inputblank></typename></state></issame></configuration></typename></new_config></new_input></transitions></cell></state></typename></typename></inputblank></typename></typename></id></n></int></int...></int></id></n></int></int></int></typename></a></typename></typename></typename></newitem></typelist></typename></typename></list></typename></typename></current_type></matcher></list></typename></list></list></typename></typename></list></typename></newitem></newitem></typename></typename></items...></newitem></typename></typename></t></typename></typelist></second...></typelist></typename...></typename...></typelist></typename...></typename></tt...></t></typename></typename...></typename></true></typename></bool></typename...></false></typename></bool></iostream>
The above is the detailed content of Is C Template Metaprogramming Turing-Complete?. For more information, please follow other related articles on the PHP Chinese website!

There are four commonly used XML libraries in C: TinyXML-2, PugiXML, Xerces-C, and RapidXML. 1.TinyXML-2 is suitable for environments with limited resources, lightweight but limited functions. 2. PugiXML is fast and supports XPath query, suitable for complex XML structures. 3.Xerces-C is powerful, supports DOM and SAX resolution, and is suitable for complex processing. 4. RapidXML focuses on performance and parses extremely fast, but does not support XPath queries.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The main differences between C# and C are syntax, performance and application scenarios. 1) The C# syntax is more concise, supports garbage collection, and is suitable for .NET framework development. 2) C has higher performance and requires manual memory management, which is often used in system programming and game development.

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Dreamweaver CS6
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.