1. Introduction
Imagine you're assembling a super-intelligent robot butler (Agent). This robot needs various tools to help you complete tasks - just like Doraemon's 4D pocket. This article will teach you how to create these powerful tools to make your AI butler more capable and efficient.
2. Two Core Tool Design Patterns
2.1 Synchronous Tools: Instant Response Mode
Think of using a self-service coffee machine:
- Insert coins and press the "Americano" button
- Wait for a few seconds
- Coffee flows out, ready to drink
This is a typical synchronous tool pattern. The Agent calls the tool and waits for immediate results - quick and simple.
class WeatherTool(BaseTool): """Weather Query Tool - Synchronous Mode""" async def execute(self, city: str) -> dict: # Simple and direct like pressing a coffee machine button weather_data = await self.weather_api.get_current(city) return { "status": "success", "data": { "temperature": weather_data.temp, "humidity": weather_data.humidity, "description": weather_data.desc } }
Use cases:
- Quick queries: weather, exchange rates, simple calculations
- Simple operations: sending messages, switch controls
- Real-time feedback: verification code checks, balance inquiries
2.2 Asynchronous Tools: Task Tracking Mode
Imagine ordering food through a delivery APP:
- After placing an order, the APP gives you an order number
- You can check the order status anytime
- The APP notifies you when delivery is complete
This is how asynchronous tools work, perfect for tasks that take longer to process.
class DocumentAnalysisTool(BaseTool): """Document Analysis Tool - Asynchronous Mode""" async def start_task(self, file_path: str) -> str: # Like placing a food delivery order, returns a task ID task_id = str(uuid.uuid4()) await self.task_queue.put({ "task_id": task_id, "file_path": file_path, "status": "processing" }) return task_id async def get_status(self, task_id: str) -> dict: # Like checking food delivery status task = await self.task_store.get(task_id) return { "task_id": task_id, "status": task["status"], "progress": task.get("progress", 0), "result": task.get("result", None) }
Use cases:
- Time-consuming operations: large file processing, data analysis
- Multi-step tasks: video rendering, report generation
- Progress tracking needed: model training, batch processing
3. Tool Interface Standardization: Establishing Universal Specifications
Just like all electrical appliances follow unified socket standards, our tool interfaces need standardization. This ensures all tools work perfectly with the Agent.
3.1 Tool Description Specifications
Imagine writing a product manual, you need to clearly tell users:
- What the tool does
- What parameters are needed
- What results will be returned
from pydantic import BaseModel, Field class ToolSchema(BaseModel): """Tool Manual Template""" name: str = Field(..., description="Tool name") description: str = Field(..., description="Tool purpose description") parameters: dict = Field(..., description="Required parameters") required: List[str] = Field(default_factory=list, description="Required parameters") class Config: schema_extra = { "example": { "name": "Weather Query", "description": "Query weather information for specified city", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "City name" } } }, "required": ["city"] } }
3.2 Unified Base Class
Just like all electrical appliances need power switches and power interfaces, all tools need to follow basic specifications:
class BaseTool(ABC): """Base template for all tools""" @abstractmethod def get_schema(self) -> ToolSchema: """Tool manual""" pass def validate_input(self, params: Dict) -> Dict: """Parameter check, like a fuse in electrical appliances""" return ToolSchema(**params).dict() @abstractmethod async def execute(self, **kwargs) -> Dict: """Actual functionality execution""" pass
4. Error Handling: Making Tools More Reliable
Just like household appliances need protection against water, shock, and overload, tools need comprehensive protection mechanisms.
4.1 Error Classification and Handling
Imagine handling express delivery:
- Wrong address → Parameter error
- System maintenance → Service temporarily unavailable
- Courier too busy → Need rate limiting and retry
class WeatherTool(BaseTool): """Weather Query Tool - Synchronous Mode""" async def execute(self, city: str) -> dict: # Simple and direct like pressing a coffee machine button weather_data = await self.weather_api.get_current(city) return { "status": "success", "data": { "temperature": weather_data.temp, "humidity": weather_data.humidity, "description": weather_data.desc } }
4.2 Retry Mechanism
Like automatically arranging a second delivery when the first attempt fails:
class DocumentAnalysisTool(BaseTool): """Document Analysis Tool - Asynchronous Mode""" async def start_task(self, file_path: str) -> str: # Like placing a food delivery order, returns a task ID task_id = str(uuid.uuid4()) await self.task_queue.put({ "task_id": task_id, "file_path": file_path, "status": "processing" }) return task_id async def get_status(self, task_id: str) -> dict: # Like checking food delivery status task = await self.task_store.get(task_id) return { "task_id": task_id, "status": task["status"], "progress": task.get("progress", 0), "result": task.get("result", None) }
5. Performance Optimization: Making Tools More Efficient
5.1 Caching Mechanism
Like a convenience store placing popular items in prominent positions:
from pydantic import BaseModel, Field class ToolSchema(BaseModel): """Tool Manual Template""" name: str = Field(..., description="Tool name") description: str = Field(..., description="Tool purpose description") parameters: dict = Field(..., description="Required parameters") required: List[str] = Field(default_factory=list, description="Required parameters") class Config: schema_extra = { "example": { "name": "Weather Query", "description": "Query weather information for specified city", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "City name" } } }, "required": ["city"] } }
5.2 Concurrency Control
Like a hospital's appointment system, controlling the number of simultaneous services:
class BaseTool(ABC): """Base template for all tools""" @abstractmethod def get_schema(self) -> ToolSchema: """Tool manual""" pass def validate_input(self, params: Dict) -> Dict: """Parameter check, like a fuse in electrical appliances""" return ToolSchema(**params).dict() @abstractmethod async def execute(self, **kwargs) -> Dict: """Actual functionality execution""" pass
6. Testing and Documentation: Ensuring Tool Reliability
6.1 Unit Testing
Like quality inspection before a new product launch:
class ToolError(Exception): """Tool error base class""" def __init__(self, message: str, error_code: str, retry_after: Optional[int] = None): self.message = message self.error_code = error_code self.retry_after = retry_after @error_handler async def execute(self, **kwargs): try: # Execute specific operation result = await self._do_work(**kwargs) return {"status": "success", "data": result} except ValidationError: # Parameter error, like wrong address return {"status": "error", "code": "INVALID_PARAMS"} except RateLimitError as e: # Need rate limiting, like courier too busy return { "status": "error", "code": "RATE_LIMIT", "retry_after": e.retry_after }
6.2 Documentation Standards
Like writing a detailed and clear product manual:
class RetryableTool(BaseTool): @retry( stop=stop_after_attempt(3), # Maximum 3 retries wait=wait_exponential(multiplier=1, min=4, max=10) # Increasing wait time ) async def execute_with_retry(self, **kwargs): return await self.execute(**kwargs)
7. Summary
Developing good Agent tools is like crafting a perfect toolbox:
- Proper tool classification - Sync/Async each has its use
- Standardized interfaces - Easy for unified management
- Protection mechanisms - Handle various exceptions
- Pursuit of efficiency - Cache when needed, rate limit when necessary
- Quality focus - Thorough testing, clear documentation
Remember: Good tools can make Agents twice as effective, while poor tools will limit Agents at every turn.
The above is the detailed content of Agent Tool Development Guide: From Design to Optimization. For more information, please follow other related articles on the PHP Chinese website!

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

WebStorm Mac version
Useful JavaScript development tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
