1. Introduction
Imagine you're assembling a super-intelligent robot butler (Agent). This robot needs various tools to help you complete tasks - just like Doraemon's 4D pocket. This article will teach you how to create these powerful tools to make your AI butler more capable and efficient.
2. Two Core Tool Design Patterns
2.1 Synchronous Tools: Instant Response Mode
Think of using a self-service coffee machine:
- Insert coins and press the "Americano" button
- Wait for a few seconds
- Coffee flows out, ready to drink
This is a typical synchronous tool pattern. The Agent calls the tool and waits for immediate results - quick and simple.
class WeatherTool(BaseTool): """Weather Query Tool - Synchronous Mode""" async def execute(self, city: str) -> dict: # Simple and direct like pressing a coffee machine button weather_data = await self.weather_api.get_current(city) return { "status": "success", "data": { "temperature": weather_data.temp, "humidity": weather_data.humidity, "description": weather_data.desc } }
Use cases:
- Quick queries: weather, exchange rates, simple calculations
- Simple operations: sending messages, switch controls
- Real-time feedback: verification code checks, balance inquiries
2.2 Asynchronous Tools: Task Tracking Mode
Imagine ordering food through a delivery APP:
- After placing an order, the APP gives you an order number
- You can check the order status anytime
- The APP notifies you when delivery is complete
This is how asynchronous tools work, perfect for tasks that take longer to process.
class DocumentAnalysisTool(BaseTool): """Document Analysis Tool - Asynchronous Mode""" async def start_task(self, file_path: str) -> str: # Like placing a food delivery order, returns a task ID task_id = str(uuid.uuid4()) await self.task_queue.put({ "task_id": task_id, "file_path": file_path, "status": "processing" }) return task_id async def get_status(self, task_id: str) -> dict: # Like checking food delivery status task = await self.task_store.get(task_id) return { "task_id": task_id, "status": task["status"], "progress": task.get("progress", 0), "result": task.get("result", None) }
Use cases:
- Time-consuming operations: large file processing, data analysis
- Multi-step tasks: video rendering, report generation
- Progress tracking needed: model training, batch processing
3. Tool Interface Standardization: Establishing Universal Specifications
Just like all electrical appliances follow unified socket standards, our tool interfaces need standardization. This ensures all tools work perfectly with the Agent.
3.1 Tool Description Specifications
Imagine writing a product manual, you need to clearly tell users:
- What the tool does
- What parameters are needed
- What results will be returned
from pydantic import BaseModel, Field class ToolSchema(BaseModel): """Tool Manual Template""" name: str = Field(..., description="Tool name") description: str = Field(..., description="Tool purpose description") parameters: dict = Field(..., description="Required parameters") required: List[str] = Field(default_factory=list, description="Required parameters") class Config: schema_extra = { "example": { "name": "Weather Query", "description": "Query weather information for specified city", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "City name" } } }, "required": ["city"] } }
3.2 Unified Base Class
Just like all electrical appliances need power switches and power interfaces, all tools need to follow basic specifications:
class BaseTool(ABC): """Base template for all tools""" @abstractmethod def get_schema(self) -> ToolSchema: """Tool manual""" pass def validate_input(self, params: Dict) -> Dict: """Parameter check, like a fuse in electrical appliances""" return ToolSchema(**params).dict() @abstractmethod async def execute(self, **kwargs) -> Dict: """Actual functionality execution""" pass
4. Error Handling: Making Tools More Reliable
Just like household appliances need protection against water, shock, and overload, tools need comprehensive protection mechanisms.
4.1 Error Classification and Handling
Imagine handling express delivery:
- Wrong address → Parameter error
- System maintenance → Service temporarily unavailable
- Courier too busy → Need rate limiting and retry
class WeatherTool(BaseTool): """Weather Query Tool - Synchronous Mode""" async def execute(self, city: str) -> dict: # Simple and direct like pressing a coffee machine button weather_data = await self.weather_api.get_current(city) return { "status": "success", "data": { "temperature": weather_data.temp, "humidity": weather_data.humidity, "description": weather_data.desc } }
4.2 Retry Mechanism
Like automatically arranging a second delivery when the first attempt fails:
class DocumentAnalysisTool(BaseTool): """Document Analysis Tool - Asynchronous Mode""" async def start_task(self, file_path: str) -> str: # Like placing a food delivery order, returns a task ID task_id = str(uuid.uuid4()) await self.task_queue.put({ "task_id": task_id, "file_path": file_path, "status": "processing" }) return task_id async def get_status(self, task_id: str) -> dict: # Like checking food delivery status task = await self.task_store.get(task_id) return { "task_id": task_id, "status": task["status"], "progress": task.get("progress", 0), "result": task.get("result", None) }
5. Performance Optimization: Making Tools More Efficient
5.1 Caching Mechanism
Like a convenience store placing popular items in prominent positions:
from pydantic import BaseModel, Field class ToolSchema(BaseModel): """Tool Manual Template""" name: str = Field(..., description="Tool name") description: str = Field(..., description="Tool purpose description") parameters: dict = Field(..., description="Required parameters") required: List[str] = Field(default_factory=list, description="Required parameters") class Config: schema_extra = { "example": { "name": "Weather Query", "description": "Query weather information for specified city", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "City name" } } }, "required": ["city"] } }
5.2 Concurrency Control
Like a hospital's appointment system, controlling the number of simultaneous services:
class BaseTool(ABC): """Base template for all tools""" @abstractmethod def get_schema(self) -> ToolSchema: """Tool manual""" pass def validate_input(self, params: Dict) -> Dict: """Parameter check, like a fuse in electrical appliances""" return ToolSchema(**params).dict() @abstractmethod async def execute(self, **kwargs) -> Dict: """Actual functionality execution""" pass
6. Testing and Documentation: Ensuring Tool Reliability
6.1 Unit Testing
Like quality inspection before a new product launch:
class ToolError(Exception): """Tool error base class""" def __init__(self, message: str, error_code: str, retry_after: Optional[int] = None): self.message = message self.error_code = error_code self.retry_after = retry_after @error_handler async def execute(self, **kwargs): try: # Execute specific operation result = await self._do_work(**kwargs) return {"status": "success", "data": result} except ValidationError: # Parameter error, like wrong address return {"status": "error", "code": "INVALID_PARAMS"} except RateLimitError as e: # Need rate limiting, like courier too busy return { "status": "error", "code": "RATE_LIMIT", "retry_after": e.retry_after }
6.2 Documentation Standards
Like writing a detailed and clear product manual:
class RetryableTool(BaseTool): @retry( stop=stop_after_attempt(3), # Maximum 3 retries wait=wait_exponential(multiplier=1, min=4, max=10) # Increasing wait time ) async def execute_with_retry(self, **kwargs): return await self.execute(**kwargs)
7. Summary
Developing good Agent tools is like crafting a perfect toolbox:
- Proper tool classification - Sync/Async each has its use
- Standardized interfaces - Easy for unified management
- Protection mechanisms - Handle various exceptions
- Pursuit of efficiency - Cache when needed, rate limit when necessary
- Quality focus - Thorough testing, clear documentation
Remember: Good tools can make Agents twice as effective, while poor tools will limit Agents at every turn.
The above is the detailed content of Agent Tool Development Guide: From Design to Optimization. For more information, please follow other related articles on the PHP Chinese website!

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Notepad++7.3.1
Easy-to-use and free code editor

WebStorm Mac version
Useful JavaScript development tools
