search
HomeBackend DevelopmentGolangIntroducing Kontroler: A Kubernetes Scheduling Engine for DAGs

What is Kontroler?

Kontroler is an open-source Kubernetes scheduling engine designed to simplify the management of Directed Acyclic Graphs (DAGs). With Kontroler, you can define workflows in YAML, run tasks as containerized jobs, and even visualize them through an optional web-based UI. Whether you need to execute workflows on a schedule or respond to real-time events, Kontroler offers a flexible, Kubernetes-native solution.

That said, I must caveat that Kontroler is currently in its alpha state. It is ideal for experimentation and prototyping but may not yet be ready for production use. As a side project, Kontroler does not come with support, so use it in production at your own risk!

If you'd like to check out the GitHub repository, here it is: https://github.com/GreedyKomodoDragon/Kontroler

Why use Kontroler?

Managing workflows on Kubernetes can be challenging. While Kubernetes offers powerful primitives like CronJobs and Jobs, coordinating complex workflows with dependencies, retries, and dynamic triggers often requires custom scripts or external tools. Kontroler simplifies this process by providing a Kubernetes-native solution to define, schedule, and manage workflows as Directed Acyclic Graphs (DAGs).

Here’s what makes Kontroler stand out:

1. Gitops DAG Management with YAML

Kontroler enables you to define your entire workflow—including tasks, dependencies, retry logic, and conditional execution—using straightforward YAML files. This approach keeps your workflows declarative, version-controlled, and easy to share across teams.

Wrap them in a Helm chart and use an automated deployment system such as ArgoCD or FluxCD, and you’ve got your DAGs managed within a GitOps workflow.

2. Supports Event-Driven and Scheduled Workflows

Whether you need workflows to run on a regular schedule (like CronJobs) or react to real-time triggers (such as a message from a queue), Kontroler has you covered. It seamlessly integrates both scheduling paradigms, making it versatile for a wide range of use cases.

Kontroler operates using DagRuns (a Custom Resource Definition, or CRD, that Kontroler can monitor). To execute a DAG run, you simply create a DagRun, and Kontroler manages the execution. By exposing this functionality outside the controller, Kontroler allows seamless integration with external systems. See an example of a DagRun below:

apiVersion: kontroler.greedykomodo/v1alpha1
kind: DagRun
metadata:
  labels:
    app.kubernetes.io/name: dagrun
    app.kubernetes.io/instance: dagrun-sample
  name: dagrun-sample
spec:
  dagName: dag-sample
  parameters:
    - name: first
      fromSecret: secret-name-new
    - name: second
      value: value_new

You simply provide the name of the DAG, optionally including any parameters. Parameters will use their default values if none are specified.

3. Integrates Seamlessly with Containers

As a Kubernetes-native application, Kontroler leverages the platform’s advantages. From simple scripts to complex applications, Kontroler’s container-first design ensures that any workload can be easily integrated into a DAG.

To further reduce duplication of effort, we are adding support for Tasks as CRDs.

4. Offers Optional UI for Better Visibility

While YAML is excellent for infrastructure as code, visualizing workflows and tracking their execution can significantly simplify debugging and optimization. Kontroler offers an optional web-based UI for creating and monitoring DAGs, providing teams with an intuitive way to manage workflows.

Introducing Kontroler: A Kubernetes Scheduling Engine for DAGs

In the screenshot above it shows you the:

  • Connections between tasks
  • In a DagRun it will show the status
  • Pod Outcomes if you click on the network

Under the hood, this functionality is powered by vis-network, an open-source project for creating graphs. You can find their GitHub repository here. Initially, we developed our own graphing tool but found it difficult to scale and challenging to make complex graphs readable. As a result, we adopted this open-source solution.

5. Flexible Pod Templates for Advanced Configurations

Kontroler’s pod templates let you customize your tasks with advanced Kubernetes features like secrets, PVCs, node affinity, security contexts, and more. This gives you fine-grained control over how tasks are executed, ensuring compatibility with your cluster's specific requirements.

Flexibility of Datastores

One of the key challenges in managing workflows is ensuring that the underlying infrastructure can scale with your needs. Kontroler offers flexible database support and logging capabilities to make it easier for teams to manage DAGs and capture detailed execution logs. Whether you're working with a lightweight setup or a more robust production environment, Kontroler has options that can fit your needs.

SQLite (Default Small Scale)

For smaller setups or during development, SQLite is the default database used by Kontroler. It’s simple, lightweight, and doesn’t require much configuration. If you’re just getting started or running Kontroler for testing purposes, SQLite is a convenient choice as it works "out-of-the-box" with no additional database setup.

If you prefer to use SQLite, you don’t need to make any additional changes to the deployment. Just follow the installation instructions, and Kontroler will handle the rest.

PostgreSQL (For Production/Large Scale)

For larger, production-grade deployments, PostgreSQL is the recommended database for storing DAGs and DagRuns. Kontroler uses PostgreSQL to provide higher performance, scalability, and reliability needed for handling large volumes of workflow data. Kontroler is compatible with PostgreSQL 16 and above

Log Collection

For many Kubernetes users, centralized log storage is a crucial requirement for observability and troubleshooting. Kontroler integrates seamlessly with Amazon S3 for log storage, making it easy to collect, store, and analyze logs from DAG executions. This integration ensures that you can capture detailed logs, keep them long-term for auditing, and use them for post-mortem analysis when something goes wrong.

We are testing with MinIO to avoid costs, but under the hood, it uses the AWS S3 API and should be able to detect your IAM attributes to grant access to your S3 buckets.

Final Remarks

We hope you’ll check out Kontroler! You can find it here: https://github.com/GreedyKomodoDragon/Kontroler.

Although still in alpha, Kontroler has significant potential for teams looking to streamline their Kubernetes operations. As it evolves, Kontroler aims to become a powerful tool for orchestrating workflows in Kubernetes, delivering the reliability and scalability teams need to automate complex processes with ease.

Kontroler is constantly improving, so keep an eye out for future updates! If you’d like to contribute to the project, we welcome all forms of contributions.

The above is the detailed content of Introducing Kontroler: A Kubernetes Scheduling Engine for DAGs. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
The Performance Race: Golang vs. CThe Performance Race: Golang vs. CApr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. C  : Code Examples and Performance AnalysisGolang vs. C : Code Examples and Performance AnalysisApr 15, 2025 am 12:03 AM

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Golang's Impact: Speed, Efficiency, and SimplicityGolang's Impact: Speed, Efficiency, and SimplicityApr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C   and Golang: When Performance is CrucialC and Golang: When Performance is CrucialApr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang in Action: Real-World Examples and ApplicationsGolang in Action: Real-World Examples and ApplicationsApr 12, 2025 am 12:11 AM

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

Golang: The Go Programming Language ExplainedGolang: The Go Programming Language ExplainedApr 10, 2025 am 11:18 AM

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Golang's Purpose: Building Efficient and Scalable SystemsGolang's Purpose: Building Efficient and Scalable SystemsApr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Why do the results of ORDER BY statements in SQL sorting sometimes seem random?Why do the results of ORDER BY statements in SQL sorting sometimes seem random?Apr 02, 2025 pm 05:24 PM

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.