Home >Backend Development >Python Tutorial >Easy way to find the Time Complexity of an Algorithm
Time complexity is considered one of the toughest topics for beginners who are just starting with Problem-Solving. Here, I am providing the time complexity analysis cheat sheet. I hope this helps. Please let me know if you have any questions.
O(1) - Constant time O(log n) - Logarithmic (halving/doubling) O(n) - Linear (single loop) O(n log n) - Linearithmic (efficient sorting) O(n²) - Quadratic (nested loops) O(2ⁿ) - Exponential (recursive doubling) O(n!) - Factorial (permutations)
# Look for: - Direct array access - Basic math operations - Fixed loops - Hash table lookups # Examples: arr[0] x + y for i in range(5) hashmap[key]
# Look for: - Halving/Doubling - Binary search patterns - Tree traversal by level # Examples: while n > 0: n = n // 2 left, right = 0, len(arr)-1 while left <= right: mid = (left + right) // 2
# Look for: - Single loops - Array traversal - Linear search - Hash table building # Examples: for num in nums: # O(1) operation total += num for i in range(n): # O(1) operation arr[i] = i
# Look for: - Efficient sorting - Divide and conquer - Tree operations with traversal # Examples: nums.sort() sorted(nums) merge_sort(nums)
# Look for: - Nested loops - Simple sorting - Matrix traversal - Comparing all pairs # Examples: for i in range(n): for j in range(n): # O(1) operation # Pattern finding for i in range(n): for j in range(i+1, n): # Compare pairs
# Look for: - Double recursion - Power set - Fibonacci recursive - All subsets # Examples: def fib(n): if n <= 1: return n return fib(n-1) + fib(n-2) def subsets(nums): if not nums: return [[]] result = subsets(nums[1:]) return result + [nums[0:1] + r for r in result]
# O(1) arr[i] # Access arr.append(x) # Add end arr.pop() # Remove end # O(n) arr.insert(i, x) # Insert middle arr.remove(x) # Remove by value arr.index(x) # Find index min(arr), max(arr) # Find min/max
# O(1) average d[key] # Access d[key] = value # Insert key in d # Check existence d.get(key) # Get value # O(n) len(d) # Size d.keys() # Get keys d.values() # Get values
# O(n) s + t # Concatenation s.find(t) # Substring search s.replace(old, new) # Replace ''.join(list) # Join # O(n²) potential s += char # Repeated concatenation
# O(n) for i in range(n): # O(1) operations # O(n/2) = O(n) for i in range(0, n, 2): # Skip elements still O(n)
# O(n²) for i in range(n): for j in range(n): # O(1) operations # O(n * m) for i in range(n): for j in range(m): # Different sizes # O(n²/2) = O(n²) for i in range(n): for j in range(i, n): # Triangular still O(n²)
# O(n + m) for i in range(n): # O(1) for j in range(m): # O(1) # O(n + n²) = O(n²) for i in range(n): # O(1) for i in range(n): for j in range(n): # O(1)
# O(n) def factorial(n): if n <= 1: return 1 return n * factorial(n-1)
# O(2ⁿ) def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-2)
# O(n log n) def mergeSort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left = mergeSort(arr[:mid]) right = mergeSort(arr[mid:]) return merge(left, right)
# String operations for c in string: newStr += c # O(n²) # List comprehension [x for x in range(n) for y in range(n)] # O(n²)
len() # O(1) min(), max() # O(n) sorted() # O(n log n) list.index() # O(n)
Thank you for reading, please give the thumbs up on the post if you found this helpful. Cheers!
The above is the detailed content of Easy way to find the Time Complexity of an Algorithm. For more information, please follow other related articles on the PHP Chinese website!