Home > Article > Backend Development > How Can Pandas Melt and Dictionary Manipulation Reshape a Wide Dataframe into a Tidy Format?
The Pandas melt function is a powerful tool for reshaping dataframes, transforming wide data into a long, tidy format. This makes data easier to analyze and manipulate.
Consider the following dataframe and dictionary:
df = pd.DataFrame([[2, 4, 7, 8, 1, 3, 2013], [9, 2, 4, 5, 5, 6, 2014]], columns=['Amy', 'Bob', 'Carl', 'Chris', 'Ben', 'Other', 'Year']) d = {'A': ['Amy'], 'B': ['Bob', 'Ben'], 'C': ['Carl', 'Chris']}
The goal is to reshape the dataframe into a tidy format with additional columns:
Group Name Year Value 0 A Amy 2013 2 1 A Amy 2014 9 2 B Bob 2013 4 ... 10 Other 2013 3 11 Other 2014 6
The melt function alone will not complete the transformation. To get the desired result, we need to manipulate the dictionary as well:
m = pd.melt(df, id_vars=['Year'], var_name='Name') d2 = {} for k, v in d.items(): for item in v: d2[item] = k m['Group'] = m['Name'].map(d2)
Finally, we move 'Other' from the 'Name' column to the 'Group' column:
mask = m['Name'] == 'Other' m.loc[mask, 'Name'] = '' m.loc[mask, 'Group'] = 'Other'
The resulting dataframe now matches the desired format. The melt function, combined with some additional manipulation, provides a flexible and efficient way to reshape dataframes.
The above is the detailed content of How Can Pandas Melt and Dictionary Manipulation Reshape a Wide Dataframe into a Tidy Format?. For more information, please follow other related articles on the PHP Chinese website!