Lambdas in Java
Lambdas are undeclared functions, meaning they do not need to be explicitly declared to be used. There is no need to specify a name, parameters, access modifiers, or return type. Essentially, a lambda is a simpler way to implement an interface with a single method.
In Java, the basic syntax of lambda functions is:
(args) -> (body)
Examples
(int x, int y) -> { return x * y; } Aluno display = (Pessoa p) -> { System.out.println(p.idade); } () -> System.out.println(new Date()); () -> { return 25.789; } x -> x <p>Curly braces are required only when the function body contains more than one statement. For example:<br> </p> <pre class="brush:php;toolbar:false">(int x, int y) -> { return x * y; }
Can be written as:
(int x, int y) -> return x * y;
Both forms produce the same result.
Lambda functions can have parameters or none at all. The parameter types can also be omitted, as Java will infer their types.
Examples
- Function with parameters (with declared types):
(int x, int y) -> { return x * y; }
- Function with parameters (without declared types):
(x, y) -> { return x * y; }
- Function without parameters:
() -> System.out.println(new Date());
If no return keyword is used, the function's return type is inferred as void:
(a) -> this.x = a;
It is important to note that lambdas are different from anonymous classes. This can be observed in the generated .class files. Unlike anonymous classes, lambdas do not generate multiple .class files for each usage.
Applications of Lambdas in Java
Threads
Lambdas simplify code by reducing verbosity when working with threads.
// Implementing the Runnable interface and creating a thread with it Runnable e = new Runnable() { public void run() { System.out.println(new Date()); } }; new Thread(e).start(); // The same implementation using a lambda expression Runnable e = () -> System.out.println(new Date()); new Thread(e).start(); // Even more concise new Thread( () -> System.out.println(new Date()) ).start();
Collections
Lambdas simplify functions such as sorting and filtering in collections.
// Print all elements in a list List<string> list = Arrays.asList("João", "Ana", "Maria", "Cesar"); for (String s : list) { System.out.println(s); } // Using lambdas list.forEach(s -> System.out.println(s)); // Lambda with multiple statements list.forEach(s -> { if (StringUtils.equals("Cesar", s)) { System.out.println(s); } }); // Conventional sorting Collections.sort(list, new Comparator<string>() { @Override public int compare(String s1, String s2) { return s1.compareTo(s2); } }); list.forEach(p -> System.out.println(p)); // Sorting using lambdas Collections.sort(list, (String s1, String s2) -> s1.compareTo(s2)); list.forEach(p -> System.out.println(p)); </string></string>
Listeners
Lambdas simplify code in listeners, which implement the Observer design pattern.
// Listening to an action on a button in a Swing window button.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent e) { System.out.println("Some actions..."); } }); // Using lambdas button.addActionListener((e) -> { System.out.println("Some actions..."); });
Generic Functions
Lambdas can be used in generic functions to solve problems by passing lambda expressions as parameters.
public class Main { /* * A method that tests a condition */ public static void testExpression(List<string> list, Predicate<string> predicate) { list.forEach(n -> { if (predicate.test(n)) { System.out.println(n); } }); } /* * Calling the method with a lambda */ public static void main(String[] args) { List<string> list = Arrays.asList("João", "Ana", "Maria", "Cesar"); // Prints "Cesar" if it exists testExpression(list, (n) -> StringUtils.equals("Cesar", n)); // Prints the entire list testExpression(list, (n) -> true); // Prints nothing testExpression(list, (n) -> false); } } </string></string></string>
The above is the detailed content of Lambdas in Java. For more information, please follow other related articles on the PHP Chinese website!

The article discusses using Maven and Gradle for Java project management, build automation, and dependency resolution, comparing their approaches and optimization strategies.

The article discusses creating and using custom Java libraries (JAR files) with proper versioning and dependency management, using tools like Maven and Gradle.

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

The article discusses using JPA for object-relational mapping with advanced features like caching and lazy loading. It covers setup, entity mapping, and best practices for optimizing performance while highlighting potential pitfalls.[159 characters]

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.