search
HomeBackend DevelopmentPython TutorialSetting up a REST API in Python for DynamoDB

Dynamo DB is AWS's NoSQL offering in the vast set of managed databases as a service that they provide. Like most other services, it's fully serverless, flexible and easy to scale.

The Data Model

As we're working on NoSQL here, there's no real restriction on the structure of data. We can operate with key-value pairs as the attributes for each item in a table. Let's look at these keywords again.

Table - a fairly familiar term, it is essentially a collection of data, in this case, items. It is also the starting point of working with DynamoDB on the console.

Item - an entry in a table. You could consider it a row in an SQL-equivalent database.

Attribute - The datapoints that constitute an item. It could contain item-specific attributes, metadata, or virtually anything that can be associated with an item.

You could think of a JSON array as an equivalent to a table in DynamoDB. I'm sure things will get clearer as we create our own table.

Setting up the database

It's literally a piece of cake to create a new table in DynamoDB from the AWS Console. All you need is a name and a partition key, which is your primary key in this case. This will help you search for items in the table.

Setting up a REST API in Python for DynamoDB

I'm creating a table for all the games that I've played, and I will rate them out of 10 :)

Setting up a REST API in Python for DynamoDB

You can mess with the table directly from the console, let's try adding a new item to see what it looks like.

Setting up a REST API in Python for DynamoDB

My first entry has to be my favourite RPG (role-playing) game - The Witcher 3. I will add a new attribute for rating and it's going to be a solid 9.8 from me :)

Setting up an API

Right, it's now time to write some Python code to do all of this without the GUI ;)

## app.py
from flask import Flask, jsonify, request
import boto3
from boto3.dynamodb.conditions import Key
import uuid  # Import uuid module for generating UUIDs

app = Flask(__name__)

# Initialize DynamoDB client
dynamodb = boto3.resource('dynamodb', region_name='ap-south-1')  # Replace with your region
## Do keep in mind to save your AWS credentials file in the root directory
table = dynamodb.Table('games')  # Replace with your table name

# Route to get all games
@app.route('/games', methods=['GET'])
def get_games():
    try:
        response = table.scan()
        games = response.get('Items', [])
        return jsonify({'games': games}), 200
    except Exception as e:
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    app.run(debug=True)

The beauty of Python is that you can setup a full-fledged API in just a few lines of code. This chunk of code is now sufficient for us to access the table and fetch the data from it. We use the scan function to fetch items from the games table.

You can start the app by using python3 app.py

Setting up a REST API in Python for DynamoDB

And you can expect a response that looks like this when you curl for the /games endpoint.

Routes for creating and updating an entry

## app.py
from flask import Flask, jsonify, request
import boto3
from boto3.dynamodb.conditions import Key
import uuid  # Import uuid module for generating UUIDs

app = Flask(__name__)

# Initialize DynamoDB client
dynamodb = boto3.resource('dynamodb', region_name='ap-south-1')  # Replace with your region
## Do keep in mind to save your AWS credentials file in the root directory
table = dynamodb.Table('games')  # Replace with your table name

# Route to get all games
@app.route('/games', methods=['GET'])
def get_games():
    try:
        response = table.scan()
        games = response.get('Items', [])
        return jsonify({'games': games}), 200
    except Exception as e:
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    app.run(debug=True)

Here, we are using put_item to add an item to the table. For updating a record, we use the function update_item.

If you observe carefully, we are using UpdateExpression where we specify the attributes that we're updating. This allows us to control exactly which attribute gets changed and avoid accidental overwrites.

Setting up a REST API in Python for DynamoDB

And to delete the record, you can go with something like this -

# Route to create a new game
@app.route('/games', methods=['POST'])
def create_game():
    try:
        game_data = request.get_json()
        name = game_data.get('name')
        rating = game_data.get('rating')
        hours = game_data.get('hours', 0)

        # Generate a random UUID for the new game
        id = str(uuid.uuid4())

        if not name or not rating:
            return jsonify({'error': 'Missing required fields'}), 400

        # Store the game in DynamoDB
        table.put_item(Item={'id': id, 'name': name, 'rating': rating, 'hours': hours})

        # Return the created game with the generated UUID
        created_game = {'id': id, 'name': name, 'rating': rating}
        return jsonify({'message': 'Game added successfully', 'game': created_game}), 201
    except Exception as e:
        return jsonify({'error': str(e)}), 500

# Route to update an existing game
@app.route('/games/<id>', methods=['PUT'])
def update_game(id):
    try:
        game_data = request.get_json()
        name = game_data.get('name')
        rating = game_data.get('rating')
        hours = game_data.get('hours', 0)

        if not name and not rating:
            return jsonify({'error': 'Nothing to update'}), 400

        update_expression = 'SET '
        expression_attribute_values = {}

        if name:
            update_expression += ' #n = :n,'
            expression_attribute_values[':n'] = name
        if rating:
            update_expression += ' #r = :r,'
            expression_attribute_values[':r'] = rating
        if hours:
            update_expression += ' #h = :h,'
            expression_attribute_values[':h'] = hours

        update_expression = update_expression[:-1]  # remove trailing comma
        response = table.update_item(
            Key={'id': id},
            UpdateExpression=update_expression,
            ExpressionAttributeNames={'#n': 'name', '#r': 'rating', '#h': 'hours'},
            ExpressionAttributeValues=expression_attribute_values,
            ReturnValues='UPDATED_NEW'
        )
        updated_game = response.get('Attributes', {})
        return jsonify(updated_game), 200
    except Exception as e:
        return jsonify({'error': str(e)}), 500
</id>

Well, there you have it, you just setup a REST API with CRUD Functionality for DynamoDB in a matter of minutes thanks to Python.

The above is the detailed content of Setting up a REST API in Python for DynamoDB. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python in Action: Real-World ExamplesPython in Action: Real-World ExamplesApr 18, 2025 am 12:18 AM

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python's Main Uses: A Comprehensive OverviewPython's Main Uses: A Comprehensive OverviewApr 18, 2025 am 12:18 AM

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool