Extracting the High Part of 64-bit Integer Multiplication
In C , multiplying two 64-bit integers ( uint64_t ) results in a value representing the lower 64 bits of the product. This operation is commonly used to achieve modular arithmetic, where the lower bits contain the desired remainder. However, sometimes, we also need to calculate the higher bit part of the multiplication.
Optimal Solution
Consider the following scenario:
uint64_t i = // some value uint64_t j = // some value uint64_t k = mulhi(i, j); // where mulhi() returns the higher part of the 64-bit multiplication
If using a GCC compiler that supports 128-bit numbers, the most effective strategy is Perform a 128-bit multiplication and extract the upper 64 bits.
Alternatives without 128-bit support
If there is no 128-bit support, you can use the method provided by Yakk. This method decomposes a and b each into two 32-bit numbers, and then uses 64-bit multiplication to calculate the product of these smaller numbers respectively.
breaks down as follows:
uint64_t a_lo = (uint32_t)a; uint64_t a_hi = a >> 32; uint64_t b_lo = (uint32_t)b; uint64_t b_hi = b >> 32;
Now, the product can be represented as:
a * b = ((a_hi <p> However, calculating the above formula using 64 bits will produce overflow. Therefore, we need to perform special processing on the intermediate result: </p><pre class="brush:php;toolbar:false">// 为防止溢出而引入的临时变量 uint64_t a_x_b_hi = a_hi * b_hi; uint64_t a_x_b_mid = a_hi * b_lo; uint64_t b_x_a_mid = b_hi * a_lo; uint64_t a_x_b_lo = a_lo * b_lo; // 计算进位位 uint64_t carry_bit = (((uint64_t)(uint32_t)a_x_b_mid + (uint64_t)(uint32_t)b_x_a_mid + (a_x_b_lo >> 32)) >> 32); // 计算高位部分并返回 uint64_t multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit; return multhi;
With slight modification, if you don’t care about the extra 1 in the high-order part, you can omit the calculation of the carry bit.
The above is the detailed content of How to Extract the Higher Part of 64-bit Integer Multiplication in C ?. For more information, please follow other related articles on the PHP Chinese website!

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 English version
Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
