Home >Backend Development >Python Tutorial >How to Pivot a Dataframe in Pandas?
Pivot a Dataframe in Pandas
To pivot a dataframe in Pandas, you can use the .pivot method. This method takes the specified values as columns and rearranges the dataframe accordingly.
Suppose you have a dataframe with columns Indicator, Country, Year, and Value. To transpose the table so that the values in the Indicator column become the new columns, use the following code:
out = df.pivot(index=['Country', 'Year'], columns='Indicator', values='Value') print(out)
The resulting output will be:
Indicator 1 2 3 4 5 Country Year Angola 2005 6 13 10 11 5 2006 3 2 7 3 6
To convert the pivoted dataframe back to a flat table, you can use .rename_axis to remove the Indicator column and .reset_index to revert Country and Year to normal columns:
print(out.rename_axis(columns=None).reset_index())
The output will be:
Country Year 1 2 3 4 5 0 Angola 2005 6 13 10 11 5 1 Angola 2006 3 2 7 3 6
If your data has duplicate combinations of labels (e.g., Country, Year, Indicator), you can use .pivot_table instead. By default, it takes the mean of repeated values:
out = df.pivot_table( index=['Country', 'Year'], columns='Indicator', values='Value') print(out.rename_axis(columns=None).reset_index())
The output will be:
Country Year 1 2 3 4 5 0 Angola 2005 6.0 13.0 10.0 11.0 5.0 1 Angola 2006 3.0 2.0 7.0 3.0 6.0
For more information on reshaping and pivot tables in Pandas, refer to the user guide.
The above is the detailed content of How to Pivot a Dataframe in Pandas?. For more information, please follow other related articles on the PHP Chinese website!