


Is using a `concurrent.futures.ThreadPoolExecutor` in a FastAPI endpoint risky?
Is It Risky to Use a Concurrent.futures.ThreadPoolExecutor in a FastAPI Endpoint?
Problem Statement:
In the provided test code, a ThreadPoolExecutor is used to retrieve data from multiple websites concurrently. The concern is that using this approach in a FastAPI endpoint could lead to excessive thread creation and potential issues like resource starvation and application crashes.
Concerns and Potential Gotchas:
- Thread Exhaustion: Creating too many threads can deplete the system's thread pool, leading to thread starvation and potentially crashing the application or host.
- Resource Contention: Threads compete for system resources, such as memory and CPU, which can slow down the application and impact performance.
- Synchronizability: Managing synchronization between threads in a multi-threaded environment can be complex and introduces potential for race conditions.
Recommended Solution: Using HTTPX Library
Instead of using a ThreadPoolExecutor, it is advisable to employ the HTTPX library, which offers an asynchronous API. HTTPX provides a number of advantages:
- Asynchronous Operation: HTTPX works asynchronously, allowing for efficient handling of concurrent requests without blocking the thread pool.
- Connection Pool Management: It automatically manages connection pools, ensuring connections are reused and limiting the number of active connections.
- Fine-Grained Control: HTTPX allows customization of connection limits and timeouts, providing precise control over resource usage.
- Simplified Integration with FastAPI: FastAPI can be integrated with HTTPX seamlessly, utilizing the async support provided by the framework.
Working Example:
from fastapi import FastAPI, Request from contextlib import asynccontextmanager import httpx import asyncio URLS = ['https://www.foxnews.com/', 'https://edition.cnn.com/', 'https://www.nbcnews.com/', 'https://www.bbc.co.uk/', 'https://www.reuters.com/'] @asynccontextmanager async def lifespan(app: FastAPI): # Customise settings limits = httpx.Limits(max_keepalive_connections=5, max_connections=10) timeout = httpx.Timeout(5.0, read=15.0) # 5s timeout on all operations # Initialise the Client on startup and add it to the state async with httpx.AsyncClient(limits=limits, timeout=timeout) as client: yield {'client': client} # The Client closes on shutdown app = FastAPI(lifespan=lifespan) async def send(url, client): return await client.get(url) @app.get('/') async def main(request: Request): client = request.state.client tasks = [send(url, client) for url in URLS] responses = await asyncio.gather(*tasks) return [r.text[:50] for r in responses] # For demo purposes, only return the first 50 chars of each response
This code snippet demonstrates the use of HTTPX with FastAPI to handle concurrent requests asynchronously, effectively mitigating the concerns associated with thread exhaustion and resource contention.
The above is the detailed content of Is using a `concurrent.futures.ThreadPoolExecutor` in a FastAPI endpoint risky?. For more information, please follow other related articles on the PHP Chinese website!

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
