search
HomeBackend DevelopmentGolangSystem Design: Building a Parking Lot System in Go

In this article, we’ll go through a low-level design (LLD) implementation of a parking lot system in Go. We'll explore different aspects of the system and see how each component interacts with the rest. This implementation focuses on clarity and real-world usefulness, so you can extend it easily if you want to add features like more vehicle types, multiple payment options, or spot reservations.

The system handles tasks like managing parking floors and spots, parking and unparking vehicles, and processing payments. We’ll also ensure it’s thread-safe for concurrent access, so if we need to expand it into a larger system, it won’t break down under pressure.


Core Components

Our design includes six main components:

  1. Parking Lot - The main entry point managing floors and parking operations.
  2. Parking Floor - Each floor contains multiple parking spots for different types of vehicles.
  3. Parking Spot - Represents a parking spot that can hold a specific type of vehicle.
  4. Parking Ticket - Tracks entry/exit times, parking charges, and the associated vehicle.
  5. Payment System - Handles parking fee calculations and payment processing.
  6. Vehicle Types - Supports different types of vehicles (cars, vans, trucks, and motorcycles). Each type has a different hourly charge.

Singleton Parking Lot

Our ParkingLot uses the Singleton pattern. This means there’s only one instance of the parking lot, which is created once and reused across the application. Here’s the code to get that working:

var (
    parkingLotInstance *ParkingLot
    once               sync.Once
)

type ParkingLot struct {
    Name   string
    floors []*ParkingFloor
}

func GetParkingLotInstance() *ParkingLot {
    once.Do(func() {
        parkingLotInstance = &ParkingLot{}
    })
    return parkingLotInstance
}

Using sync.Once, we ensure that only one instance is created, even when accessed by multiple goroutines.

Managing Floors in the Parking Lot

The parking lot has multiple floors, each with designated parking spots for different vehicle types (e.g., cars, vans, trucks, and motorcycles). To add a floor to the parking lot, we use the AddFloor method:

func (p *ParkingLot) AddFloor(floorID int) {
    p.floors = append(p.floors, NewParkingFloor(floorID))
}

Each floor is created using the NewParkingFloor function, which organizes spots by vehicle type.

Parking Spots

Each ParkingSpot is associated with a specific vehicle type (like a car or motorcycle). This allows the system to manage and restrict which vehicles can park in each spot. Here’s the ParkingSpot structure and the ParkVehicle method:

type ParkingSpot struct {
    SpotID         int
    VehicleType    vehicles.VehicleType
    CurrentVehicle *vehicles.VehicleInterface
    lock           sync.Mutex
}

func (p *ParkingSpot) ParkVehicle(vehicle vehicles.VehicleInterface) error {
    p.lock.Lock()
    defer p.lock.Unlock()

    if vehicle.GetVehicleType() != p.VehicleType {
        return fmt.Errorf("vehicle type mismatch: expected %s, got %s", p.VehicleType, vehicle.GetVehicleType())
    }
    if p.CurrentVehicle != nil {
        return fmt.Errorf("parking spot already occupied")
    }

    p.CurrentVehicle = &vehicle
    return nil
}

We use a Mutex lock to make sure only one vehicle can park in a spot at a time.

Parking Ticket

Every vehicle gets a ticket with the entry time, exit time, parking spot, and total charge. This ticket will be updated when the vehicle exits, and charges will be calculated based on the time spent parked.

var (
    parkingLotInstance *ParkingLot
    once               sync.Once
)

type ParkingLot struct {
    Name   string
    floors []*ParkingFloor
}

func GetParkingLotInstance() *ParkingLot {
    once.Do(func() {
        parkingLotInstance = &ParkingLot{}
    })
    return parkingLotInstance
}

The CalculateTotalCharge method calculates parking fees based on the vehicle type and duration.

Payment System

The PaymentSystem class processes the payment, updating the payment status based on whether the required amount is paid:

func (p *ParkingLot) AddFloor(floorID int) {
    p.floors = append(p.floors, NewParkingFloor(floorID))
}

The ProcessPayment function checks the amount and updates the payment status to Completed or Failed.

Adding Vehicle Types

Our system supports different types of vehicles (cars, vans, trucks, and motorcycles). Each type has a different hourly charge. This is achieved by setting up a VehicleType and VehicleInterface in a separate vehicles package:

type ParkingSpot struct {
    SpotID         int
    VehicleType    vehicles.VehicleType
    CurrentVehicle *vehicles.VehicleInterface
    lock           sync.Mutex
}

func (p *ParkingSpot) ParkVehicle(vehicle vehicles.VehicleInterface) error {
    p.lock.Lock()
    defer p.lock.Unlock()

    if vehicle.GetVehicleType() != p.VehicleType {
        return fmt.Errorf("vehicle type mismatch: expected %s, got %s", p.VehicleType, vehicle.GetVehicleType())
    }
    if p.CurrentVehicle != nil {
        return fmt.Errorf("parking spot already occupied")
    }

    p.CurrentVehicle = &vehicle
    return nil
}

We can create new vehicles by calling NewCar, NewVan, NewTruck, etc., each of which implements VehicleInterface.


Bringing It All Together

Let’s see how the pieces fit together in a flow:

  • Create a Parking Lot: Call GetParkingLotInstance() and add floors with AddFloor.
  • Find Parking Spot and Park Vehicle: ParkVehicle method finds an available spot, validates it against the vehicle type, and generates a ticket.
  • Unpark Vehicle and Process Payment: UnparkVehicle generates the total charge, initiates the payment system, and completes the transaction.

This parking lot system is a simplified starting point for building more complex systems. We covered the basics of floor and spot management, vehicle parking and unparking, and a basic payment process.

For full code implementation, check the following repository:

System Design: Building a Parking Lot System in Go thesaltree / low-level-design-golang

Low level system design solutions in Golang

Low-Level System Design in Go

Welcome to the Low-Level System Design in Go repository! This repository contains various low-level system design problems and their solutions implemented in Go. The primary aim is to demonstrate the design and architecture of systems through practical examples.

Table of Contents

  • Overview
  • Parking Lot System
  • Elevator System
  • Library Management System
  • Vending Machine System
  • Social Media Platform

Overview

Low-level system design involves understanding the core concepts of system architecture and designing scalable, maintainable, and efficient systems. This repository will try to cover solutions of various problems and scenarios using Go.

Parking Lot System

The first project in this repository is a Parking Lot System. This system simulates a parking lot where vehicles can be parked and unparked. It demonstrates:

  • Singleton design pattern for managing the parking lot instance.
  • Handling different types of vehicles (e.g., cars, trucks).
  • Parking space management across multiple floors.
  • Payment processing for…


View on GitHub


The above is the detailed content of System Design: Building a Parking Lot System in Go. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Go Strings Package: Essential Functions You Need to KnowGo Strings Package: Essential Functions You Need to KnowMay 07, 2025 pm 04:57 PM

Go'sstringspackageincludesessentialfunctionslikeContains,TrimSpace,Split,andReplaceAll.1)Containsefficientlychecksforsubstrings.2)TrimSpaceremoveswhitespacetoensuredataintegrity.3)SplitparsesstructuredtextlikeCSV.4)ReplaceAlltransformstextaccordingto

Mastering String Manipulation with Go's 'strings' Package: a practical guideMastering String Manipulation with Go's 'strings' Package: a practical guideMay 07, 2025 pm 03:57 PM

ThestringspackageinGoiscrucialforefficientstringmanipulationduetoitsoptimizedfunctionsandUnicodesupport.1)ItsimplifiesoperationswithfunctionslikeContains,Join,Split,andReplaceAll.2)IthandlesUTF-8encoding,ensuringcorrectmanipulationofUnicodecharacters

Mastering Go Binary Data: A Deep Dive into the 'encoding/binary' PackageMastering Go Binary Data: A Deep Dive into the 'encoding/binary' PackageMay 07, 2025 pm 03:49 PM

The"encoding/binary"packageinGoiscrucialforefficientbinarydatamanipulation,offeringperformancebenefitsinnetworkprogramming,fileI/O,andsystemoperations.Itsupportsendiannessflexibility,handlesvariousdatatypes,andisessentialforcustomprotocolsa

Implementing Mutexes and Locks in Go for Thread SafetyImplementing Mutexes and Locks in Go for Thread SafetyMay 05, 2025 am 12:18 AM

In Go, using mutexes and locks is the key to ensuring thread safety. 1) Use sync.Mutex for mutually exclusive access, 2) Use sync.RWMutex for read and write operations, 3) Use atomic operations for performance optimization. Mastering these tools and their usage skills is essential to writing efficient and reliable concurrent programs.

Benchmarking and Profiling Concurrent Go CodeBenchmarking and Profiling Concurrent Go CodeMay 05, 2025 am 12:18 AM

How to optimize the performance of concurrent Go code? Use Go's built-in tools such as getest, gobench, and pprof for benchmarking and performance analysis. 1) Use the testing package to write benchmarks to evaluate the execution speed of concurrent functions. 2) Use the pprof tool to perform performance analysis and identify bottlenecks in the program. 3) Adjust the garbage collection settings to reduce its impact on performance. 4) Optimize channel operation and limit the number of goroutines to improve efficiency. Through continuous benchmarking and performance analysis, the performance of concurrent Go code can be effectively improved.

Error Handling in Concurrent Go Programs: Avoiding Common PitfallsError Handling in Concurrent Go Programs: Avoiding Common PitfallsMay 05, 2025 am 12:17 AM

The common pitfalls of error handling in concurrent Go programs include: 1. Ensure error propagation, 2. Processing timeout, 3. Aggregation errors, 4. Use context management, 5. Error wrapping, 6. Logging, 7. Testing. These strategies help to effectively handle errors in concurrent environments.

Implicit Interface Implementation in Go: The Power of Duck TypingImplicit Interface Implementation in Go: The Power of Duck TypingMay 05, 2025 am 12:14 AM

ImplicitinterfaceimplementationinGoembodiesducktypingbyallowingtypestosatisfyinterfaceswithoutexplicitdeclaration.1)Itpromotesflexibilityandmodularitybyfocusingonbehavior.2)Challengesincludeupdatingmethodsignaturesandtrackingimplementations.3)Toolsli

Go Error Handling: Best Practices and PatternsGo Error Handling: Best Practices and PatternsMay 04, 2025 am 12:19 AM

In Go programming, ways to effectively manage errors include: 1) using error values ​​instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values ​​for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools