Home >Backend Development >Python Tutorial >How Do I Add a Constant Column to a Spark DataFrame?
Adding a Constant Column to a Spark DataFrame
When attempting to add a new column to a DataFrame using withColumn and a constant value, users may encounter an error due to mismatched data types.
Solution:
Spark 2.2 :
Use typedLit to directly assign constant values of various types:
import org.apache.spark.sql.functions.typedLit df.withColumn("some_array", typedLit(Seq(1, 2, 3)))
Spark 1.3 :
Use lit to create a literal value:
from pyspark.sql.functions import lit df.withColumn('new_column', lit(10))
Spark 1.4 :
For complex columns, use function blocks like array, struct, and create_map:
from pyspark.sql.functions import array, struct, create_map df.withColumn("some_array", array(lit(1), lit(2), lit(3)))
In Scala:
import org.apache.spark.sql.functions.{array, lit, map, struct} df.withColumn("new_column", lit(10)) df.withColumn("map", map(lit("key1"), lit(1), lit("key2"), lit(2)))
For structs, use alias on each field or cast on the whole object to provide names:
df.withColumn( "some_struct", struct(lit("foo").alias("x"), lit(1).alias("y"), lit(0.3).alias("z")) )
Note:
These constructs can also be used to pass constant arguments to UDFs or SQL functions.
The above is the detailed content of How Do I Add a Constant Column to a Spark DataFrame?. For more information, please follow other related articles on the PHP Chinese website!