search
HomeBackend DevelopmentPython TutorialImplementing a Fraud Detection System with Levenshtein Distance in a Django Project

Implémentation d

Levenshtein distance can be used in a fraud detection system to compare user-entered data (such as name, address or email) with existing data in order to identify similar but potentially fraudulent entries.

Here is a step-by-step guide to integrating this functionality into your Django project.


1. Use Case

A fraud detection system can compare:

  • Similar emails: to detect accounts created with slight variations (e.g., user@example.com vs. userr@example.com).
  • Near Addresses: To check if multiple accounts are using nearly identical addresses.
  • Similar Names: to spot users with slightly modified names (e.g., John Doe vs. Jon Doe).

2. Steps for Implementation

a. Create Middleware or Signal to Analyze Data

Use Django's signals to check for new user data at the time of registration or update.

b. Install a Levenshtein Calculation Function

Integrate a library to calculate the Levenshtein distance or use a Python function like this:

from django.db.models import Q
from .models import User  # Assume User is your user model

def levenshtein_distance(a, b):
    n, m = len(a), len(b)
    if n > m:
        a, b = b, a
        n, m = m, n

    current_row = range(n + 1)  # Keep current and previous row
    for i in range(1, m + 1):
        previous_row, current_row = current_row, [i] + [0] * n
        for j in range(1, n + 1):
            add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1]
            if a[j - 1] != b[i - 1]:
                change += 1
            current_row[j] = min(add, delete, change)

    return current_row[n]

c. Add a Fraud Detection Feature

In your signal or middleware, compare the entered data with that in the database to find similar entries.

from django.db.models import Q
from .models import User  # Assume User is your user model

def detect_similar_entries(email, threshold=2):
    users = User.objects.filter(~Q(email=email))  # Exclure l'utilisateur actuel
    similar_users = []

    for user in users:
        distance = levenshtein_distance(email, user.email)
        if distance 



<h4>
  
  
  <strong>d. Connect to Signal post_save for Users</strong>
</h4>

<p>Use the post_save signal to run this check after a user registers or updates:<br>
</p>

<pre class="brush:php;toolbar:false">from django.db.models.signals import post_save
from django.dispatch import receiver
from .models import User
from .utils import detect_similar_entries  # Import your function

@receiver(post_save, sender=User)
def check_for_fraud(sender, instance, **kwargs):
    similar_users = detect_similar_entries(instance.email)

    if similar_users:
        print(f"Potential fraud detected for {instance.email}:")
        for user, distance in similar_users:
            print(f" - Similar email: {user.email}, Distance: {distance}")

e. Option: Add a Fraud Log Template

To keep track of suspected fraud, you can create a FraudLog model:

from django.db import models
from django.contrib.auth.models import User

class FraudLog(models.Model):
    suspicious_user = models.ForeignKey(User, related_name='suspicious_logs', on_delete=models.CASCADE)
    similar_user = models.ForeignKey(User, related_name='similar_logs', on_delete=models.CASCADE)
    distance = models.IntegerField()
    created_at = models.DateTimeField(auto_now_add=True)

Save suspicious matches in this template:

from django.db.models import Q
from .models import User  # Assume User is your user model

def levenshtein_distance(a, b):
    n, m = len(a), len(b)
    if n > m:
        a, b = b, a
        n, m = m, n

    current_row = range(n + 1)  # Keep current and previous row
    for i in range(1, m + 1):
        previous_row, current_row = current_row, [i] + [0] * n
        for j in range(1, n + 1):
            add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1]
            if a[j - 1] != b[i - 1]:
                change += 1
            current_row[j] = min(add, delete, change)

    return current_row[n]

3. Improvements and Optimizations

a. Limit Comparisons

  • Compare only recent users or those from the same region, company, etc.

b. Adjust Threshold

  • Set a different threshold for acceptable distances depending on the field (for example, a threshold of 1 for emails, 2 for names).

c. Use of Advanced Algorithms

  • Explore libraries like RapidFuzz for optimized calculations.

d. Integration into Django Admin

  • Add alerts in the admin interface for users with potential fraud risks.

4. Conclusion

With this approach, you have implemented a fraud detection system based on the Levenshtein distance. It helps identify similar entries, reducing the risk of creating fraudulent accounts or duplicating data. This system is expandable and can be adjusted to meet the specific needs of your project.

The above is the detailed content of Implementing a Fraud Detection System with Levenshtein Distance in a Django Project. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python in Action: Real-World ExamplesPython in Action: Real-World ExamplesApr 18, 2025 am 12:18 AM

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python's Main Uses: A Comprehensive OverviewPython's Main Uses: A Comprehensive OverviewApr 18, 2025 am 12:18 AM

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor