Home > Article > Backend Development > How Can I Detect CPU Architecture at Compile Time?
Determining CPU Architecture at Compile Time
Identifying CPU architecture is crucial for code optimization and hardware-specific operations. However, different compilers utilize varying preprocessor definitions for this purpose, such as "_M_X86" for MSVS and "__i386__" for GCC.
Is There a Standard Approach for Architecture Detection?
Regrettably, there is no standard way to determine CPU architecture during compilation. Compilers implement their own methods for representing this information.
Comprehensive List of Architecture Definitions
While a standardized list of definitions doesn't exist, there are several resources available to assist in identifying specific compiler-related definitions:
Comprehensive Code Example for Architecture Detection
The following code snippet offers a comprehensive method for determining CPU architecture during compilation, accounting for a wide range of architectures:
extern "C" { const char *getBuild() { //Get current architecture, detectx nearly every architecture. Coded by Freak #if defined(__x86_64__) || defined(_M_X64) return "x86_64"; #elif defined(i386) || defined(__i386__) || defined(__i386) || defined(_M_IX86) return "x86_32"; #elif defined(__ARM_ARCH_2__) return "ARM2"; #elif defined(__ARM_ARCH_3__) || defined(__ARM_ARCH_3M__) return "ARM3"; #elif defined(__ARM_ARCH_4T__) || defined(__TARGET_ARM_4T) return "ARM4T"; #elif defined(__ARM_ARCH_5_) || defined(__ARM_ARCH_5E_) return "ARM5" #elif defined(__ARM_ARCH_6T2_) || defined(__ARM_ARCH_6T2_) return "ARM6T2"; #elif defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) return "ARM6"; #elif defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) return "ARM7"; #elif defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) return "ARM7A"; #elif defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) return "ARM7R"; #elif defined(__ARM_ARCH_7M__) return "ARM7M"; #elif defined(__ARM_ARCH_7S__) return "ARM7S"; #elif defined(__aarch64__) || defined(_M_ARM64) return "ARM64"; #elif defined(mips) || defined(__mips__) || defined(__mips) return "MIPS"; #elif defined(__sh__) return "SUPERH"; #elif defined(__powerpc) || defined(__powerpc__) || defined(__powerpc64__) || defined(__POWERPC__) || defined(__ppc__) || defined(__PPC__) || defined(_ARCH_PPC) return "POWERPC"; #elif defined(__PPC64__) || defined(__ppc64__) || defined(_ARCH_PPC64) return "POWERPC64"; #elif defined(__sparc__) || defined(__sparc) return "SPARC"; #elif defined(__m68k__) return "M68K"; #else return "UNKNOWN"; #endif } }
The above is the detailed content of How Can I Detect CPU Architecture at Compile Time?. For more information, please follow other related articles on the PHP Chinese website!