APIs are the backbone of most applications that rely on data exchange or external integrations.
Learning to build APIs in Python can open up many opportunities to connect your app with other systems and make a versatile backend.
Here, I’ll walk you through the basics of APIs, creating REST APIs, and building them with Flask and FastAPI—two popular Python frameworks.
1. Introduction to APIs
In today’s digital world, APIs are everywhere.
They allow different systems and applications to talk to each other, sharing data and functionalities seamlessly.
For example, when you use an app to check the weather, it's actually calling an API that returns the weather data.
APIs make life easier by acting as intermediaries that process requests and return data in a standardized way.
It’s also worth noting that APIs don’t only serve client applications (like websites or mobile apps).
APIs can be used between backend systems or microservices within the same infrastructure to manage data more efficiently.
2. REST APIs
REST (Representational State Transfer) is one of the most popular ways to create APIs due to its simplicity and compatibility with HTTP.
RESTful APIs are structured to allow standard HTTP methods (like GET, POST, PUT, DELETE) to manipulate resources.
They’re often used to manage CRUD (Create, Read, Update, and Delete) operations, where each request method performs an operation on the resource data.
If you're building a web service, REST is likely the most approachable and widely supported format to start with.
REST APIs are also stateless, which means each request operates independently, allowing REST APIs to scale more easily.
3. Building an API with Flask
Flask is my go-to for small or medium-sized projects, as it’s lightweight and easy to get up and running.
Flask lets you control nearly every aspect of your API, but it also requires a bit more work on data validation and error handling.
This flexibility, though, is ideal for those who want more control over how each part of the API functions.
Example of Creating a Flask API
Here’s how a task management API can look in Flask.
First, make sure to install flask with pip:
pip install flask
This example shows how you can quickly set up endpoints for getting and creating tasks, as well as updating and deleting.
from flask import Flask, jsonify, request app = Flask(__name__) tasks = [ {"id": 1, "task": "Learn Flask", "done": False}, {"id": 2, "task": "Build API", "done": False} ] @app.route('/tasks', methods=['GET']) def get_tasks(): return jsonify({"tasks": tasks}) @app.route('/tasks', methods=['POST']) def create_task(): new_task = { "id": len(tasks) + 1, "task": request.json["task"], "done": False } tasks.append(new_task) return jsonify(new_task), 201 @app.route('/tasks/<task_id>', methods=['GET']) def get_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: return jsonify(task) return jsonify({"message": "Task not found"}), 404 @app.route('/tasks/<task_id>', methods=['PUT']) def update_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: task.update(request.json) return jsonify(task) return jsonify({"message": "Task not found"}), 404 @app.route('/tasks/<task_id>', methods=['DELETE']) def delete_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: tasks.remove(task) return jsonify({"message": "Task deleted"}) return jsonify({"message": "Task not found"}), 404 if __name__ == '__main__': app.run(debug=True) </task_id></task_id></task_id>
This Python code sets up a REST API using Flask to manage a list of tasks, allowing clients to create, retrieve, update, and delete tasks.
The tasks are stored in a list where each task is a dictionary with an id, task, and done status.
The /tasks endpoint supports GET requests to return the full list of tasks and POST requests to add new tasks, automatically assigning each task a unique ID.
Additional endpoints, /tasks/
If a task with the specified ID is not found, these endpoints return a 404 error with an appropriate message.
The API runs in debug mode, making it ideal for development and testing purposes.
Just be aware that for larger projects, you might need to add more structured routing and validation mechanisms.
4. Building an API with FastAPI
FastAPI is an excellent choice for performance-sensitive applications or projects that require a bit more structure and type safety.
FastAPI is designed to be faster by default (thanks to its asynchronous capabilities) and offers robust data validation out-of-the-box using Pydantic.
I’ve found FastAPI very intuitive and easy to work with, especially for projects where I need async capabilities and want built-in validation without third-party packages.
Plus, the automatic documentation (via Swagger UI) makes it extremely convenient.
Example of Creating a FastAPI API
Here’s how the task management API could look in FastAPI.
Don't forget to first install fastapi and uvicorn with pip:
pip install flask
Then you can create the API:
from flask import Flask, jsonify, request app = Flask(__name__) tasks = [ {"id": 1, "task": "Learn Flask", "done": False}, {"id": 2, "task": "Build API", "done": False} ] @app.route('/tasks', methods=['GET']) def get_tasks(): return jsonify({"tasks": tasks}) @app.route('/tasks', methods=['POST']) def create_task(): new_task = { "id": len(tasks) + 1, "task": request.json["task"], "done": False } tasks.append(new_task) return jsonify(new_task), 201 @app.route('/tasks/<task_id>', methods=['GET']) def get_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: return jsonify(task) return jsonify({"message": "Task not found"}), 404 @app.route('/tasks/<task_id>', methods=['PUT']) def update_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: task.update(request.json) return jsonify(task) return jsonify({"message": "Task not found"}), 404 @app.route('/tasks/<task_id>', methods=['DELETE']) def delete_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: tasks.remove(task) return jsonify({"message": "Task deleted"}) return jsonify({"message": "Task not found"}), 404 if __name__ == '__main__': app.run(debug=True) </task_id></task_id></task_id>
This Python code creates a task management API using FastAPI, leveraging Pydantic models for data validation and type enforcement.
It defines a Task model with an id, task, and done status, and initializes a list of tasks.
The API includes endpoints to perform CRUD operations on tasks: the /tasks endpoint allows GET requests to retrieve the task list and POST requests to add a new task, automatically validating incoming data.
The /tasks/{task_id} endpoint allows specific task retrieval with GET, updating with PUT, and deletion with DELETE, returning a 404 error if a task with the specified id is not found.
FastAPI's asynchronous capabilities and integrated documentation make this API efficient and easy to test, ideal for rapid development.
5. Testing APIs
Testing is critical, especially when creating an API that other applications will consume.
Flask and FastAPI provide excellent support for unit testing, making it easy to verify each endpoint’s behavior.
To make testing easier, I’d recommend using pytest for general test structure, as it’s compatible with both Flask and FastAPI.
For FastAPI specifically, TestClient is a helpful tool to mock HTTP requests and check responses.
You will need to install httpx with pip:
pip install flask
Here’s an example for testing a FastAPI endpoint:
from flask import Flask, jsonify, request app = Flask(__name__) tasks = [ {"id": 1, "task": "Learn Flask", "done": False}, {"id": 2, "task": "Build API", "done": False} ] @app.route('/tasks', methods=['GET']) def get_tasks(): return jsonify({"tasks": tasks}) @app.route('/tasks', methods=['POST']) def create_task(): new_task = { "id": len(tasks) + 1, "task": request.json["task"], "done": False } tasks.append(new_task) return jsonify(new_task), 201 @app.route('/tasks/<task_id>', methods=['GET']) def get_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: return jsonify(task) return jsonify({"message": "Task not found"}), 404 @app.route('/tasks/<task_id>', methods=['PUT']) def update_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: task.update(request.json) return jsonify(task) return jsonify({"message": "Task not found"}), 404 @app.route('/tasks/<task_id>', methods=['DELETE']) def delete_task(task_id): task = next((task for task in tasks if task["id"] == task_id), None) if task: tasks.remove(task) return jsonify({"message": "Task deleted"}) return jsonify({"message": "Task not found"}), 404 if __name__ == '__main__': app.run(debug=True) </task_id></task_id></task_id>
With both frameworks, testing is straightforward and allows you to verify that your API behaves as expected, especially as it evolves.
6. Comparison Between Flask and FastAPI
Let's see a comparison between Flask and FastAPI
If you’re working on a quick prototype or a smaller project, Flask’s simplicity might be all you need.
For projects that require high concurrency, data validation, or auto-documentation, FastAPI provides a more powerful, feature-rich environment.
7. Conclusion
Both Flask and FastAPI have strengths that make them suited to different types of projects.
If you’re new to Python web development, starting with Flask can help you understand the basics before moving to something more advanced.
FastAPI, on the other hand, is an ideal choice if you’re looking for modern, high-performance API development with built-in validation and documentation.
No matter which you choose, Python offers a robust ecosystem for API development.
Both frameworks will allow you to create APIs that can power diverse applications, from simple websites to complex microservices.
The key is to experiment, understand each framework's strengths, and pick the right tool for your needs.
The above is the detailed content of How to Quickly Build APIs in Python. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
