Introduction to Utility Types
Utility types in TypeScript allow you to transform existing types into new ones by including, excluding, or modifying properties. This can be incredibly useful when you need to create type definitions that are tailored to specific use cases without duplicating code.
Using ReturnType and Awaited in TypeScript
When working with TypeScript, you might often need to determine the return type of a function. TypeScript provides a handy utility type called ReturnType for this purpose. Let’s walk through how to use it, including handling asynchronous functions.
1. Getting the Return Type of a Function
To get the return type of a function, you can use the ReturnType utility type. Here’s an example:
function foo() { const something:string = "" return something; } function async fooWithAsync() { const something:string = "" return something; }
// will return Promise>
In this example:
The foo function returns a string.
ReturnType extracts the return type of foo, which is string.
2. Handling Asynchronous Functions
When dealing with asynchronous functions, the return type is a Promise. Here’s an example:
type MyReturnType = ReturnType
In this example:
The fooWithAsync function returns a Promise that resolves to a string.
ReturnType extracts the return type, which is Promise.
3. Using Awaited for Asynchronous Functions
If you want to get the resolved type of the Promise returned by an asynchronous function, you can use the Awaited utility type. Here’s how:
type MyAsyncReturnType = Awaited<returntype foo>> </returntype>
In this example:
ReturnType gives Promise.
Awaited> resolves the Promise to its underlying type, which is string.
Summary:
ReturnType: Extracts the return type of a function.
Awaited: Resolves the type of a Promise.
export const getEvents = async (user: User): Promise<apiresponse> => { const eventsApiUrl: string = `${PROMOS_END_POINTS.EVENTS}`; const apiInstance: AxiosInstance = getAxiosInstance(user, API_SERVICES.PROMOTIONS); const response: AxiosResponse = await apiInstance.get(eventsApiUrl); return response.data; }; type OfferEvent = Awaited<returntype getevents>>; const initEvent:OfferEvent = {event:[]} </returntype></apiresponse>
By combining these utility types, you can effectively determine the return types of both synchronous and asynchronous functions in TypeScript.
*Extracting Return Types with Conditional Types in TypeScript
*
In TypeScript, you can use conditional types and type inference to dynamically extract the return type from a function type. This is particularly useful for creating flexible and reusable type utilities. Let’s explore how this works with the MyReturnTypeWithCondition type alias.
type MyReturnTypeWithCondition<t> = T extends (...args: any[]) => infer R ? R : never; </t>
Breaking It Down
Conditional Check: T extends (...args: any[]) => infer R
This part checks if T is a function type.
The ...args: any[] syntax matches any function signature.
The infer R keyword captures the return type of the function into a type variable R.
Result: ? R : never
If T is a function type, the type alias resolves to R, the return type of the function.
If T is not a function type, it resolves to never.
Practical Example
Consider the following example to see this in action:
function foo() { const something:string = "" return something; } function async fooWithAsync() { const something:string = "" return something; }
In above example, ReturnType will be boolean because
Example Function is a function type that returns a boolean. If you use a non-function type, ReturnType will be never.
This approach allows you to create highly adaptable type utilities that can infer and manipulate types based on their structure. It’s a powerful feature of TypeScript that enhances type safety and code maintainability.
Combining and Prettifying Types in TypeScript
When working with TypeScript, you often need to combine multiple types or interfaces to create more complex structures. This can sometimes result in types that are difficult to read and manage. This document will explore how to combine two types, make nested types prettier, and check if merged types are equal.
1. Combining Two Types
Combining two types in TypeScript is a common task. You can achieve this using intersection types (&). Let’s say you have two interfaces, OfferSummaryWithoutConfig and OfferTypeConfiguration, and you want to combine them.
type MyAsyncReturnType = Awaited<returntype foo>> </returntype>
You can combine these two interfaces using the intersection type (&):
export const getEvents = async (user: User): Promise<apiresponse> => { const eventsApiUrl: string = `${PROMOS_END_POINTS.EVENTS}`; const apiInstance: AxiosInstance = getAxiosInstance(user, API_SERVICES.PROMOTIONS); const response: AxiosResponse = await apiInstance.get(eventsApiUrl); return response.data; }; type OfferEvent = Awaited<returntype getevents>>; const initEvent:OfferEvent = {event:[]} </returntype></apiresponse>
This creates a new type that includes all the properties from both OfferSummaryWithoutConfig and OfferTypeConfiguration.
2. Prettifying Nested Types
When you merge types, the resulting type can sometimes look messy and hard to read. To make these types more readable, you can use a utility type called Prettify.
type MyReturnTypeWithCondition<t> = T extends (...args: any[]) => infer R ? R : never; </t>
This utility type iterates over the keys of the type T and reconstructs it, making the type definition cleaner and easier to read.
After combining the types, you can use the Prettify utility type to clean up the resulting type
Conditional Check: T extends (...args: any[]) => infer R
3. Checking if Merged Types are Equal
To ensure that the merged type is exactly what you expect, you can use utility types to check if two types are identical, exact, or equal.
IsExact: Checks if two types are exactly the same.
type ExampleFunction = (x: number, y: string) => boolean; type ReturnType = MyReturnTypeWithCondition<examplefunction>; // ReturnType will be boolean </examplefunction>
IsIdentical: Uses conditional types to compare two types.
type IsIdentical
IsEqual: Ensures that both types have the same keys.
export interface OfferSummaryWithoutConfig { id: string; auditInfo: AuditInfo; offerBasicInfo: OfferBasicInfo; metaData: MetaData; conditionGroupsSummary: ConditionGroupsSummary[]; rewardGroupsSummary: RewardGroupsSummary[]; userOperations: ActionPermission; } export interface OfferTypeConfiguration { id: number; name: string; description: string; configuration: Configuration; }
You can use these utility types to check if CombinedType is identical, exact, or equal to another type OfferSummary.
type CombinedType = OfferSummaryWithoutConfig & { offerTypeConfiguration: OfferTypeConfiguration; };
Practical Example
Let’s put it all together with a practical example:
type Prettify<t> = { }; </t>
The above is the detailed content of TypeScript : Utility Utility Types. For more information, please follow other related articles on the PHP Chinese website!

JavaScript core data types are consistent in browsers and Node.js, but are handled differently from the extra types. 1) The global object is window in the browser and global in Node.js. 2) Node.js' unique Buffer object, used to process binary data. 3) There are also differences in performance and time processing, and the code needs to be adjusted according to the environment.

JavaScriptusestwotypesofcomments:single-line(//)andmulti-line(//).1)Use//forquicknotesorsingle-lineexplanations.2)Use//forlongerexplanationsorcommentingoutblocksofcode.Commentsshouldexplainthe'why',notthe'what',andbeplacedabovetherelevantcodeforclari

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Zend Studio 13.0.1
Powerful PHP integrated development environment

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
