search
HomeWeb Front-endJS TutorialAlgorithms Behind JavaScript Array Methods

Algorithms Behind JavaScript Array Methods

Algorithms Behind JavaScript Array Methods.

JavaScript arrays come with various built-in methods that allow manipulation and retrieval of data in an array. Here’s a list of array methods extracted from your outline:

  1. concat()
  2. join()
  3. fill()
  4. includes()
  5. indexOf()
  6. reverse()
  7. sort()
  8. splice()
  9. at()
  10. copyWithin()
  11. flat()
  12. Array.from()
  13. findLastIndex()
  14. forEach()
  15. every()
  16. entries()
  17. values()
  18. toReversed() (creates a reversed copy of the array without modifying the original)
  19. toSorted() (creates a sorted copy of the array without modifying the original)
  20. toSpliced() (creates a new array with elements added or removed without modifying the original)
  21. with() (returns a copy of the array with a specific element replaced)
  22. Array.fromAsync()
  23. Array.of()
  24. map()
  25. flatMap()
  26. reduce()
  27. reduceRight()
  28. some()
  29. find()
  30. findIndex()
  31. findLast()

Let me break down the common algorithms used for each JavaScript array method:

1. concat()

  • Algorithm: Linear append/merge
  • Time Complexity: O(n) where n is total length of all arrays
  • Internally uses iteration to create new array and copy elements
// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};

2. join()

  • Algorithm: Linear traversal with string concatenation
  • Time Complexity: O(n)
  • Iterates through array elements and builds result string
// join()
Array.prototype.myJoin = function(separator = ',') {
  let result = '';
  for (let i = 0; i 



<h3>
  
  
  3. fill()
</h3>

  • Algorithm: Linear traversal with assignment
  • Time Complexity: O(n)
  • Simple iteration with value assignment
// fill()
Array.prototype.myFill = function(value, start = 0, end = this.length) {
  for (let i = start; i 



<h3>
  
  
  4. includes()
</h3>

  • Algorithm: Linear search
  • Time Complexity: O(n)
  • Sequential scan until element found or end reached
// includes()
Array.prototype.myIncludes = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  5. indexOf()
</h3>

  • Algorithm: Linear search
  • Time Complexity: O(n)
  • Sequential scan from start until match found
// indexOf()
Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  6. reverse()
</h3>

  • Algorithm: Two-pointer swap
  • Time Complexity: O(n/2)
  • Swaps elements from start/end moving inward
// reverse()
Array.prototype.myReverse = function() {
  let left = 0;
  let right = this.length - 1;

  while (left 



<h3>
  
  
  7. sort()
</h3>

  • Algorithm: Typically TimSort (hybrid of merge sort and insertion sort)
  • Time Complexity: O(n log n)
  • Modern browsers use adaptive sorting algorithms
// sort()
Array.prototype.mySort = function(compareFn) {
  // Implementation of QuickSort for simplicity
  // Note: Actual JS engines typically use TimSort
  const quickSort = (arr, low, high) => {
    if (low  {
    const pivot = arr[high];
    let i = low - 1;

    for (let j = low; j 



<h3>
  
  
  8. splice()
</h3>

  • Algorithm: Linear array modification
  • Time Complexity: O(n)
  • Shifts elements and modifies array in-place
// splice()
Array.prototype.mySplice = function(start, deleteCount, ...items) {
  const len = this.length;
  const actualStart = start  0) {
    // Moving elements right
    for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) {
      this[i + shiftCount] = this[i];
    }
  } else if (shiftCount 



<h3>
  
  
  9. at()
</h3>

  • Algorithm: Direct index access
  • Time Complexity: O(1)
  • Simple array indexing with boundary checking
// at()
Array.prototype.myAt = function(index) {
  const actualIndex = index >= 0 ? index : this.length + index;
  return this[actualIndex];
};

10. copyWithin()

  • Algorithm: Block memory copy
  • Time Complexity: O(n)
  • Internal memory copy and shift operations
// copyWithin()
Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) {
  const len = this.length;
  let to = target 



<h3>
  
  
  11. flat()
</h3>

  • Algorithm: Recursive depth-first traversal
  • Time Complexity: O(n) for single level, O(d*n) for depth d
  • Recursively flattens nested arrays
// flat()
Array.prototype.myFlat = function(depth = 1) {
  const flatten = (arr, currentDepth) => {
    const result = [];
    for (const item of arr) {
      if (Array.isArray(item) && currentDepth 



<h3>
  
  
  12. Array.from()
</h3>

  • Algorithm: Iteration and copy
  • Time Complexity: O(n)
  • Creates new array from iterable
// Array.from()
Array.myFrom = function(arrayLike, mapFn) {
  const result = [];
  for (let i = 0; i 



<h3>
  
  
  13. findLastIndex()
</h3>

  • Algorithm: Reverse linear search
  • Time Complexity: O(n)
  • Sequential scan from end until match found
// findLastIndex()
Array.prototype.myFindLastIndex = function(predicate) {
  for (let i = this.length - 1; i >= 0; i--) {
    if (predicate(this[i], i, this)) return i;
  }
  return -1;
};

14. forEach()

  • Algorithm: Linear iteration
  • Time Complexity: O(n)
  • Simple iteration with callback execution
// forEach()
Array.prototype.myForEach = function(callback) {
  for (let i = 0; i 



<h3>
  
  
  15. every()
</h3>

<p>Algorithm: Short-circuit linear scan<br>
Time Complexity: O(n)<br>
Stops on first false condition<br>
</p><pre class="brush:php;toolbar:false">// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};

16. entries()

  • Algorithm: Iterator protocol implementation
  • Time Complexity: O(1) for creation, O(n) for full iteration
  • Creates iterator object
// join()
Array.prototype.myJoin = function(separator = ',') {
  let result = '';
  for (let i = 0; i 



<h3>
  
  
  17. values()
</h3>

  • Algorithm: Iterator protocol implementation
  • Time Complexity: O(1) for creation, O(n) for full iteration
  • Creates iterator for values
// fill()
Array.prototype.myFill = function(value, start = 0, end = this.length) {
  for (let i = start; i 



<h3>
  
  
  18. toReversed()
</h3>

  • Algorithm: Copy with reverse iteration
  • Time Complexity: O(n)
  • Creates new reversed array
// includes()
Array.prototype.myIncludes = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  19. toSorted()
</h3>

  • Algorithm: Copy then TimSort
  • Time Complexity: O(n log n)
  • Creates sorted copy using standard sort
// indexOf()
Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) {
  const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex);
  for (let i = startIndex; i 



<h3>
  
  
  20. toSpliced()
</h3>

  • Algorithm: Copy with modification
  • Time Complexity: O(n)
  • Creates modified copy
// reverse()
Array.prototype.myReverse = function() {
  let left = 0;
  let right = this.length - 1;

  while (left 



<h3>
  
  
  21. with()
</h3>

  • Algorithm: Shallow copy with single modification
  • Time Complexity: O(n)
  • Creates copy with one element changed
// sort()
Array.prototype.mySort = function(compareFn) {
  // Implementation of QuickSort for simplicity
  // Note: Actual JS engines typically use TimSort
  const quickSort = (arr, low, high) => {
    if (low  {
    const pivot = arr[high];
    let i = low - 1;

    for (let j = low; j 



<h3>
  
  
  22. Array.fromAsync()
</h3>

  • Algorithm: Asynchronous iteration and collection
  • Time Complexity: O(n) async operations
  • Handles promises and async iterables
// splice()
Array.prototype.mySplice = function(start, deleteCount, ...items) {
  const len = this.length;
  const actualStart = start  0) {
    // Moving elements right
    for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) {
      this[i + shiftCount] = this[i];
    }
  } else if (shiftCount 



<h3>
  
  
  23. Array.of()
</h3>

  • Algorithm: Direct array creation
  • Time Complexity: O(n)
  • Creates array from arguments
// at()
Array.prototype.myAt = function(index) {
  const actualIndex = index >= 0 ? index : this.length + index;
  return this[actualIndex];
};

24. map()

  • Algorithm: Transform iteration
  • Time Complexity: O(n)
  • Creates new array with transformed elements
// copyWithin()
Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) {
  const len = this.length;
  let to = target 



<h3>
  
  
  25. flatMap()
</h3>

  • Algorithm: Map flatten
  • Time Complexity: O(n*m) where m is average mapped array size
  • Combines mapping and flattening
// flat()
Array.prototype.myFlat = function(depth = 1) {
  const flatten = (arr, currentDepth) => {
    const result = [];
    for (const item of arr) {
      if (Array.isArray(item) && currentDepth 



<h3>
  
  
  26. reduce()
</h3>

  • Algorithm: Linear accumulation
  • Time Complexity: O(n)
  • Sequential accumulation with callback
// Array.from()
Array.myFrom = function(arrayLike, mapFn) {
  const result = [];
  for (let i = 0; i 



<h3>
  
  
  27. reduceRight()
</h3>

  • Algorithm: Reverse linear accumulation
  • Time Complexity: O(n)
  • Right-to-left accumulation
// findLastIndex()
Array.prototype.myFindLastIndex = function(predicate) {
  for (let i = this.length - 1; i >= 0; i--) {
    if (predicate(this[i], i, this)) return i;
  }
  return -1;
};

28. some()

  • Algorithm: Short-circuit linear scan
  • Time Complexity: O(n)
  • Stops on first true condition
// forEach()
Array.prototype.myForEach = function(callback) {
  for (let i = 0; i 



<h3>
  
  
  29. find()
</h3>

  • Algorithm: Linear search
  • Time Complexity: O(n)
  • Sequential scan until condition met
// every()
Array.prototype.myEvery = function(predicate) {
  for (let i = 0; i 



<h3>
  
  
  30. findIndex()
</h3>

  • Algorithm: Linear search
  • Time Complexity: O(n)
  • Sequential scan for matching condition
// entries()
Array.prototype.myEntries = function() {
  let index = 0;
  const array = this;

  return {
    [Symbol.iterator]() {
      return this;
    },
    next() {
      if (index 



<h3>
  
  
  31. findLast()
</h3>

  • Algorithm: Reverse linear search
  • Time Complexity: O(n)
  • Sequential scan from end
// concat()
Array.prototype.myConcat = function(...arrays) {
  const result = [...this];
  for (const arr of arrays) {
    for (const item of arr) {
      result.push(item);
    }
  }
  return result;
};

I've provided complete implementations of all 31 array methods you requested.

? Connect with me on LinkedIn:

Let’s dive deeper into the world of software engineering together! I regularly share insights on JavaScript, TypeScript, Node.js, React, Next.js, data structures, algorithms, web development, and much more. Whether you're looking to enhance your skills or collaborate on exciting topics, I’d love to connect and grow with you.

Follow me: Nozibul Islam

The above is the detailed content of Algorithms Behind JavaScript Array Methods. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript's Core: Is It Built on C or C  ?JavaScript's Core: Is It Built on C or C ?May 05, 2025 am 12:07 AM

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js Streams with TypeScriptNode.js Streams with TypeScriptApr 30, 2025 am 08:22 AM

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

Python vs. JavaScript: Performance and Efficiency ConsiderationsPython vs. JavaScript: Performance and Efficiency ConsiderationsApr 30, 2025 am 12:08 AM

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.

The Origins of JavaScript: Exploring Its Implementation LanguageThe Origins of JavaScript: Exploring Its Implementation LanguageApr 29, 2025 am 12:51 AM

JavaScript originated in 1995 and was created by Brandon Ike, and realized the language into C. 1.C language provides high performance and system-level programming capabilities for JavaScript. 2. JavaScript's memory management and performance optimization rely on C language. 3. The cross-platform feature of C language helps JavaScript run efficiently on different operating systems.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment