Algorithms Behind JavaScript Array Methods.
JavaScript arrays come with various built-in methods that allow manipulation and retrieval of data in an array. Here’s a list of array methods extracted from your outline:
- concat()
- join()
- fill()
- includes()
- indexOf()
- reverse()
- sort()
- splice()
- at()
- copyWithin()
- flat()
- Array.from()
- findLastIndex()
- forEach()
- every()
- entries()
- values()
- toReversed() (creates a reversed copy of the array without modifying the original)
- toSorted() (creates a sorted copy of the array without modifying the original)
- toSpliced() (creates a new array with elements added or removed without modifying the original)
- with() (returns a copy of the array with a specific element replaced)
- Array.fromAsync()
- Array.of()
- map()
- flatMap()
- reduce()
- reduceRight()
- some()
- find()
- findIndex()
- findLast()
Let me break down the common algorithms used for each JavaScript array method:
1. concat()
- Algorithm: Linear append/merge
- Time Complexity: O(n) where n is total length of all arrays
- Internally uses iteration to create new array and copy elements
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
2. join()
- Algorithm: Linear traversal with string concatenation
- Time Complexity: O(n)
- Iterates through array elements and builds result string
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i <h3> 3. fill() </h3>
- Algorithm: Linear traversal with assignment
- Time Complexity: O(n)
- Simple iteration with value assignment
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i <h3> 4. includes() </h3>
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan until element found or end reached
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i <h3> 5. indexOf() </h3>
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan from start until match found
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i <h3> 6. reverse() </h3>
- Algorithm: Two-pointer swap
- Time Complexity: O(n/2)
- Swaps elements from start/end moving inward
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left <h3> 7. sort() </h3>
- Algorithm: Typically TimSort (hybrid of merge sort and insertion sort)
- Time Complexity: O(n log n)
- Modern browsers use adaptive sorting algorithms
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low { const pivot = arr[high]; let i = low - 1; for (let j = low; j <h3> 8. splice() </h3>
- Algorithm: Linear array modification
- Time Complexity: O(n)
- Shifts elements and modifies array in-place
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount <h3> 9. at() </h3>
- Algorithm: Direct index access
- Time Complexity: O(1)
- Simple array indexing with boundary checking
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
10. copyWithin()
- Algorithm: Block memory copy
- Time Complexity: O(n)
- Internal memory copy and shift operations
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target <h3> 11. flat() </h3>
- Algorithm: Recursive depth-first traversal
- Time Complexity: O(n) for single level, O(d*n) for depth d
- Recursively flattens nested arrays
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth <h3> 12. Array.from() </h3>
- Algorithm: Iteration and copy
- Time Complexity: O(n)
- Creates new array from iterable
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i <h3> 13. findLastIndex() </h3>
- Algorithm: Reverse linear search
- Time Complexity: O(n)
- Sequential scan from end until match found
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
14. forEach()
- Algorithm: Linear iteration
- Time Complexity: O(n)
- Simple iteration with callback execution
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i <h3> 15. every() </h3> <p>Algorithm: Short-circuit linear scan<br> Time Complexity: O(n)<br> Stops on first false condition<br> </p><pre class="brush:php;toolbar:false">// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
16. entries()
- Algorithm: Iterator protocol implementation
- Time Complexity: O(1) for creation, O(n) for full iteration
- Creates iterator object
// join() Array.prototype.myJoin = function(separator = ',') { let result = ''; for (let i = 0; i <h3> 17. values() </h3>
- Algorithm: Iterator protocol implementation
- Time Complexity: O(1) for creation, O(n) for full iteration
- Creates iterator for values
// fill() Array.prototype.myFill = function(value, start = 0, end = this.length) { for (let i = start; i <h3> 18. toReversed() </h3>
- Algorithm: Copy with reverse iteration
- Time Complexity: O(n)
- Creates new reversed array
// includes() Array.prototype.myIncludes = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i <h3> 19. toSorted() </h3>
- Algorithm: Copy then TimSort
- Time Complexity: O(n log n)
- Creates sorted copy using standard sort
// indexOf() Array.prototype.myIndexOf = function(searchElement, fromIndex = 0) { const startIndex = fromIndex >= 0 ? fromIndex : Math.max(0, this.length + fromIndex); for (let i = startIndex; i <h3> 20. toSpliced() </h3>
- Algorithm: Copy with modification
- Time Complexity: O(n)
- Creates modified copy
// reverse() Array.prototype.myReverse = function() { let left = 0; let right = this.length - 1; while (left <h3> 21. with() </h3>
- Algorithm: Shallow copy with single modification
- Time Complexity: O(n)
- Creates copy with one element changed
// sort() Array.prototype.mySort = function(compareFn) { // Implementation of QuickSort for simplicity // Note: Actual JS engines typically use TimSort const quickSort = (arr, low, high) => { if (low { const pivot = arr[high]; let i = low - 1; for (let j = low; j <h3> 22. Array.fromAsync() </h3>
- Algorithm: Asynchronous iteration and collection
- Time Complexity: O(n) async operations
- Handles promises and async iterables
// splice() Array.prototype.mySplice = function(start, deleteCount, ...items) { const len = this.length; const actualStart = start 0) { // Moving elements right for (let i = len - 1; i >= actualStart + actualDeleteCount; i--) { this[i + shiftCount] = this[i]; } } else if (shiftCount <h3> 23. Array.of() </h3>
- Algorithm: Direct array creation
- Time Complexity: O(n)
- Creates array from arguments
// at() Array.prototype.myAt = function(index) { const actualIndex = index >= 0 ? index : this.length + index; return this[actualIndex]; };
24. map()
- Algorithm: Transform iteration
- Time Complexity: O(n)
- Creates new array with transformed elements
// copyWithin() Array.prototype.myCopyWithin = function(target, start = 0, end = this.length) { const len = this.length; let to = target <h3> 25. flatMap() </h3>
- Algorithm: Map flatten
- Time Complexity: O(n*m) where m is average mapped array size
- Combines mapping and flattening
// flat() Array.prototype.myFlat = function(depth = 1) { const flatten = (arr, currentDepth) => { const result = []; for (const item of arr) { if (Array.isArray(item) && currentDepth <h3> 26. reduce() </h3>
- Algorithm: Linear accumulation
- Time Complexity: O(n)
- Sequential accumulation with callback
// Array.from() Array.myFrom = function(arrayLike, mapFn) { const result = []; for (let i = 0; i <h3> 27. reduceRight() </h3>
- Algorithm: Reverse linear accumulation
- Time Complexity: O(n)
- Right-to-left accumulation
// findLastIndex() Array.prototype.myFindLastIndex = function(predicate) { for (let i = this.length - 1; i >= 0; i--) { if (predicate(this[i], i, this)) return i; } return -1; };
28. some()
- Algorithm: Short-circuit linear scan
- Time Complexity: O(n)
- Stops on first true condition
// forEach() Array.prototype.myForEach = function(callback) { for (let i = 0; i <h3> 29. find() </h3>
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan until condition met
// every() Array.prototype.myEvery = function(predicate) { for (let i = 0; i <h3> 30. findIndex() </h3>
- Algorithm: Linear search
- Time Complexity: O(n)
- Sequential scan for matching condition
// entries() Array.prototype.myEntries = function() { let index = 0; const array = this; return { [Symbol.iterator]() { return this; }, next() { if (index <h3> 31. findLast() </h3>
- Algorithm: Reverse linear search
- Time Complexity: O(n)
- Sequential scan from end
// concat() Array.prototype.myConcat = function(...arrays) { const result = [...this]; for (const arr of arrays) { for (const item of arr) { result.push(item); } } return result; };
I've provided complete implementations of all 31 array methods you requested.
? Connect with me on LinkedIn:
Let’s dive deeper into the world of software engineering together! I regularly share insights on JavaScript, TypeScript, Node.js, React, Next.js, data structures, algorithms, web development, and much more. Whether you're looking to enhance your skills or collaborate on exciting topics, I’d love to connect and grow with you.
Follow me: Nozibul Islam
The above is the detailed content of Algorithms Behind JavaScript Array Methods. For more information, please follow other related articles on the PHP Chinese website!

Detailed explanation of JavaScript string replacement method and FAQ This article will explore two ways to replace string characters in JavaScript: internal JavaScript code and internal HTML for web pages. Replace string inside JavaScript code The most direct way is to use the replace() method: str = str.replace("find","replace"); This method replaces only the first match. To replace all matches, use a regular expression and add the global flag g: str = str.replace(/fi

Leverage jQuery for Effortless Web Page Layouts: 8 Essential Plugins jQuery simplifies web page layout significantly. This article highlights eight powerful jQuery plugins that streamline the process, particularly useful for manual website creation

So here you are, ready to learn all about this thing called AJAX. But, what exactly is it? The term AJAX refers to a loose grouping of technologies that are used to create dynamic, interactive web content. The term AJAX, originally coined by Jesse J

10 fun jQuery game plugins to make your website more attractive and enhance user stickiness! While Flash is still the best software for developing casual web games, jQuery can also create surprising effects, and while not comparable to pure action Flash games, in some cases you can also have unexpected fun in your browser. jQuery tic toe game The "Hello world" of game programming now has a jQuery version. Source code jQuery Crazy Word Composition Game This is a fill-in-the-blank game, and it can produce some weird results due to not knowing the context of the word. Source code jQuery mine sweeping game

Article discusses creating, publishing, and maintaining JavaScript libraries, focusing on planning, development, testing, documentation, and promotion strategies.

This tutorial demonstrates creating dynamic page boxes loaded via AJAX, enabling instant refresh without full page reloads. It leverages jQuery and JavaScript. Think of it as a custom Facebook-style content box loader. Key Concepts: AJAX and jQuery

This tutorial demonstrates how to create a captivating parallax background effect using jQuery. We'll build a header banner with layered images that create a stunning visual depth. The updated plugin works with jQuery 1.6.4 and later. Download the

This JavaScript library leverages the window.name property to manage session data without relying on cookies. It offers a robust solution for storing and retrieving session variables across browsers. The library provides three core methods: Session


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
