search
HomeWeb Front-endJS TutorialRabbitMQ with Web MQTT Plugin vs. Node.js : Performance and Memory Usage Comparison

Introduction

In applications that require real-time, efficient data communication, two commonly used technologies are RabbitMQ with the Web MQTT Plugin and Node.JS (Socket.IO). RabbitMQ with the Web MQTT Plugin allows for communication using the MQTT protocol over WebSockets, while Node.JS (Socket.IO) provides a JavaScript runtime that efficiently handles events in real-time. This article compares the performance and memory usage of RabbitMQ with the Web MQTT Plugin and Node.JS (Socket.IO), particularly for handling 36 events such as notifications, data reloads, and queue management. It also analyzes whether this setup is optimal or requires further adjustments.


Overview of RabbitMQ with Web MQTT Plugin

What is RabbitMQ with Web MQTT Plugin?

RabbitMQ is a message broker that supports multiple protocols, including MQTT. The Web MQTT Plugin in RabbitMQ enables clients to communicate with the broker via WebSockets using the MQTT protocol. This is particularly useful for web-based applications that need real-time, two-way communication, such as notifications or data queuing.

Key Functions of RabbitMQ with Web MQTT Plugin

  1. WebSocket Communication: Allows web-based clients to use MQTT over WebSockets, enabling direct communication between the server and browser clients.
  2. Queue and Topic Management: Supports queue and topic configurations for effective message traffic management.
  3. Retained Messages: Stores the last message so that newly connected clients can receive the latest information without re-requesting.
  4. High Scalability for Lightweight Messages: Ideal for applications sending real-time notifications with low latency, like data reloads and notification queues.

Overview of Node.JS (Socket.IO)

What is Node.JS (Socket.IO)?

Node.JS (Socket.IO) is a JavaScript runtime built on Chrome's V8 engine, designed to handle non-blocking I/O operations. In this context, server.js is used to manage notification events, data reloads, and queues via WebSocket or HTTP protocols, depending on the application requirements.

Key Functions of Node.JS (Socket.IO)

  1. Non-Blocking I/O: Allows handling multiple requests simultaneously without blocking other operations, ideal for event-driven applications.
  2. Event-Driven Architecture: Reduces resource consumption by running code only when specific events occur.
  3. Two-Way Communication: Node.JS (Socket.IO) is well-suited for real-time applications that require continuous two-way communication between the client and server via WebSocket.
  4. Efficiency and Responsiveness: Efficiently handles large numbers of I/O-based connections, such as managing notifications and queues.

Challenges and Limitations

RabbitMQ with Web MQTT Plugin

  1. Resource Consumption: RabbitMQ, especially with the Web MQTT Plugin, can consume a lot of memory and CPU to handle high message volumes. In this test, RabbitMQ showed a CPU usage of about 5.2%, which is relatively high but reasonable for a message broker.
  2. Latency under High Load: Under extremely high loads, there might be a slight latency in message delivery, which can impact applications heavily reliant on real-time performance.
  3. More Complex Configuration: Compared to Node.JS (Socket.IO), RabbitMQ with Web MQTT Plugin requires more initial configuration, especially for setting up queues, topics, and bindings.

Node.JS (Socket.IO)

  1. Single-Threaded: Node.JS (Socket.IO) uses a single thread, so CPU-intensive operations can become a bottleneck. In testing, CPU usage reached 50.5%, which is high for a single-threaded application and may cause delays.
  2. Memory Leaks: If not managed properly, a Node.JS (Socket.IO) application can experience memory leaks, especially in long-running applications with high event activity.
  3. Dependency on External Libraries: Node.JS (Socket.IO) often relies on many third-party libraries which, if not maintained, could affect overall performance.

Performance Analysis with Glances

RabbitMQ with Web MQTT Plugin vs. Node.js : Performance and Memory Usage Comparison

RabbitMQ with Web MQTT Plugin vs. Node.js : Performance and Memory Usage Comparison

Overview of the Processes

  • RabbitMQ with Web MQTT Plugin:
    • CPU usage: 5.2%
    • Memory usage: 2.8% (5.97 GB Virtual, 887 MB Resident)
    • Uptime: 18 hours and 26 minutes
  • Node.js (server.js):
    • CPU usage: 50.5%
    • Memory usage: 0.4% (1.04 GB Virtual, 257 MB Resident)
    • Uptime: 4 hours and 1 minute

These numbers give an initial impression of how each service is consuming resources.

CPU Usage Comparison

  • RabbitMQ is relatively light on CPU, only consuming 5.2%, even though it is managing 38 events (notifications, data reloads, and queue management tasks). This low CPU usage is characteristic of RabbitMQ, as it is optimized for message handling and asynchronous communication.
  • Node.js (server.js) is consuming significantly more CPU, at 50.5%. This high usage suggests that server.js may be handling more compute-intensive tasks, possibly related to managing WebSocket connections, processing requests, or handling real-time data. This high CPU usage could impact the server’s performance under higher load or when additional applications are running concurrently.

Memory Usage Comparison

  • RabbitMQ shows higher memory usage with 887 MB resident memory, which is reasonable for a messaging broker handling continuous WebSocket connections and MQTT messaging through the Web MQTT Plugin. Its virtual memory footprint (5.97 GB) is high, but this is typically due to pre-allocation and not actual memory in use.
  • Node.js (server.js) has a much lower memory footprint, with only 257 MB resident memory. Node.js applications generally have a small memory footprint but can grow based on the complexity of tasks. Its relatively low memory usage here suggests it is well-optimized for handling tasks, though the high CPU usage may indicate some inefficiencies in CPU-bound tasks.

Uptime and Stability

  • RabbitMQ has an uptime of over 18 hours, and it’s using minimal CPU, indicating that it is stable and efficient over longer periods.
  • Node.js (server.js) has only been running for 4 hours but is consuming a large percentage of the CPU. If this CPU usage trend continues, it could become a bottleneck and may require restarting or optimization, especially for a production environment that expects high uptime.

Implications on System Performance

  • RabbitMQ with Web MQTT Plugin appears to be less demanding on the CPU and moderate in memory usage. This makes it well-suited for applications that require high-throughput messaging with minimal latency. The current resource usage does not seem excessive, but monitoring memory over longer uptime periods is advised, as message brokers can accumulate memory usage with a high volume of persistent messages.
  • Node.js (server.js) at 50.5% CPU usage suggests that it could be CPU-bound, which could affect other processes or reduce system responsiveness under high load. If server.js handles WebSocket connections, optimizing the code for asynchronous tasks or offloading some processes could reduce CPU usage. High CPU usage in Node.js might also suggest the need for load balancing across multiple instances, especially if the server needs to scale to handle more events.

Recommendations for Optimization

  • RabbitMQ: Although RabbitMQ's memory usage is moderate, monitoring is recommended to ensure it doesn't grow unbounded over time, especially with increased event volumes.
  • Node.js (server.js):
    • Optimize CPU Usage: Review code for any CPU-intensive operations or synchronous code that might benefit from asynchronous handling.
    • Benchmark and Load Test: Conduct stress tests to see if server.js CPU usage increases further with more concurrent events. This could help identify specific code bottlenecks.
    • Scaling: Consider horizontal scaling for server.js by running multiple instances behind a load balancer, especially if high CPU usage persists under typical workloads.

Latency

  • RabbitMQ with Web MQTT Plugin: Generally has low latency, especially in real-time communication for lightweight messages, which is ideal for notification and data reload scenarios.
  • Node.JS (Socket.IO): Low latency, but high CPU load can introduce delays, especially if the application handles CPU-intensive events.

Conclusion

RabbitMQ with Web MQTT Plugin is a good choice for applications that require real-time message handling, particularly for the 36 events including notifications, data reloads, and queue management. With around 5.2% CPU usage, RabbitMQ is stable for high message delivery loads, especially when low latency and two-way communication are needed.

Node.JS (Socket.IO) is suitable for applications needing an event-driven architecture with two-way communication. However, with CPU usage reaching 50.5%, applications may face limitations in scenarios requiring high CPU processing. Therefore, solutions like clustering or worker threads could be considered if usage continues to grow.

Overall:

  • RabbitMQ with Web MQTT Plugin: Highly recommended for applications with large messaging and notification needs. It also simplifies managing connections and messages through WebSockets efficiently.
  • Node.JS (Socket.IO): Ideal for web applications that require fast responses and two-way communication but may require further adjustments to reduce CPU load.

With performance analysis through Glances, both technologies have demonstrated results by capturing the highest CPU usage values from each process, which is quite suitable for this scenario. However, regular monitoring is necessary to prevent spikes in CPU or memory usage that could impact the overall system performance.

please correct me if I'm wrong ?

Note : If you have any suggestions for testing, please comment below, and feel free to recommend other tools for real-time communication between the client and server ?.

Documentation:
https://www.rabbitmq.com/docs/web-mqtt
https://socket.io/docs/v4/

The above is the detailed content of RabbitMQ with Web MQTT Plugin vs. Node.js : Performance and Memory Usage Comparison. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. JavaScript: A Comparative Analysis for DevelopersPython vs. JavaScript: A Comparative Analysis for DevelopersMay 09, 2025 am 12:22 AM

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Python vs. JavaScript: Choosing the Right Tool for the JobPython vs. JavaScript: Choosing the Right Tool for the JobMay 08, 2025 am 12:10 AM

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript: Understanding the Strengths of EachPython and JavaScript: Understanding the Strengths of EachMay 06, 2025 am 12:15 AM

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScript's Core: Is It Built on C or C  ?JavaScript's Core: Is It Built on C or C ?May 05, 2025 am 12:07 AM

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.