Home >Backend Development >Golang >How can I efficiently read and write CSV files in Go using concurrency?
Efficient CSV Read and Write in Go
The task of reading and writing a CSV file efficiently in Go involves optimizing the I/O operations. Consider the following code snippet that reads a CSV file, performs calculations on the data, and writes the results to a new CSV file:
<code class="go">package main import ( "encoding/csv" "fmt" "log" "os" "strconv" ) func ReadRow(r *csv.Reader) (map[string]string, error) { record, err := r.Read() if err == io.EOF { return nil, io.EOF } if err != nil { return nil, err } m := make(map[string]string) for i, v := range record { m[strconv.Itoa(i)] = v } return m, nil } func main() { // load data csv csvFile, err := os.Open("./path/to/datafile.csv") if err != nil { log.Fatal(err) } defer csvFile.Close() // create channel to process rows concurrently recCh := make(chan map[string]string, 10) go func() { defer close(recCh) r := csv.NewReader(csvFile) if _, err := r.Read(); err != nil { //read header log.Fatal(err) } for { rec, err := ReadRow(r) if err == io.EOF { return // no more rows to read } if err != nil { log.Fatal(err) } recCh <- rec } }() // write results to a new csv outfile, err := os.Create("./where/to/write/resultsfile.csv")) if err != nil { log.Fatal("Unable to open output") } defer outfile.Close() writer := csv.NewWriter(outfile) for record := range recCh { time := record["0"] value := record["1"] // get float values floatValue, err := strconv.ParseFloat(value, 64) if err != nil { log.Fatal("Record: %v, Error: %v", floatValue, err) } // calculate scores; THIS EXTERNAL METHOD CANNOT BE CHANGED score := calculateStuff(floatValue) valueString := strconv.FormatFloat(floatValue, 'f', 8, 64) scoreString := strconv.FormatFloat(prob, 'f', 8, 64) //fmt.Printf("Result: %v\n", []string{time, valueString, scoreString}) writer.Write([]string{time, valueString, scoreString}) } writer.Flush() }</code>
The key improvement in this code is the use of concurrency to process CSV rows one at a time. By using a channel, we can read rows from the input CSV file in a goroutine and write the results to the output CSV file in the main routine concurrently. This approach avoids loading the entire file into memory, which can significantly reduce the memory consumption and improve the performance.
The above is the detailed content of How can I efficiently read and write CSV files in Go using concurrency?. For more information, please follow other related articles on the PHP Chinese website!