Home >Backend Development >Python Tutorial >How to Format Pandas GroupBy Aggregation Results to Avoid Scientific Notation?
Formatting Pandas GroupBy Aggregation Results to Avoid Scientific Notation
Groupby operations in Pandas often produce results in scientific notation when dealing with large numbers. To customize the display format and suppress scientific notation, there are several approaches to consider.
Option 1: Pandas Display Options
Pandas provides a way to set custom float formatting options. By utilizing the pd.set_option function, you can specify a string converter to handle the display of float values:
<code class="python">pd.set_option('display.float_format', lambda x: '%.3f' % x)</code>
This converter applies three decimal places of precision to all float values, which effectively suppresses scientific notation.
Option 2: Lambda Function
You can also apply a lambda function to the groupby result to convert it to string and manually specify the formatting:
<code class="python">df1.groupby('dept')['data1'].sum().apply(lambda x: '%.3f' % x)</code>
This approach is more flexible as it allows you to control the exact formatting parameters.
Option 3: String Conversion
As mentioned in the question, you can convert the groupby result to a string using astype(str) to eliminate scientific notation:
<code class="python">df1.groupby('dept')['data1'].sum().astype(str)</code>
This method simply represents the values as strings, but it does not provide any formatting options.
Note: Modifying the Pandas display options will affect the entire DataFrame, not just the specific groupby result. If you only need to modify the format for a specific operation, it is recommended to use the lambda function or string conversion approaches.
The above is the detailed content of How to Format Pandas GroupBy Aggregation Results to Avoid Scientific Notation?. For more information, please follow other related articles on the PHP Chinese website!