Home >Backend Development >Python Tutorial >How to Drop Rows from a Pandas Dataframe Based on a List of Index Labels?
Dropping Rows from a Pandas Dataframe based on a List
In Pandas, manipulating dataframes often involves dropping rows or columns. One specific scenario arises when you need to remove rows based on a sequence of index labels.
To drop rows from a dataframe based on a list of index labels, you can utilize the DataFrame.drop method. This method allows for the selective removal of data based on specified criteria.
Solution:
In the given example, you have a dataframe df and a list [1, 2, 4] representing the index labels of the rows to be dropped. You can employ DataFrame.drop as follows:
df.drop(index=[1, 2, 4])
This command will generate a new dataframe containing all the rows except those with index labels 1, 2, and 4.
Example:
Consider the provided dataframe df:
sales discount net_sales cogs STK_ID RPT_Date 600141 20060331 2.709 NaN 2.709 2.245 20060630 6.590 NaN 6.590 5.291 20060930 10.103 NaN 10.103 7.981 20061231 15.915 NaN 15.915 12.686 20070331 3.196 NaN 3.196 2.710 20070630 7.907 NaN 7.907 6.459
Dropping rows with index labels [1, 2, 4] using DataFrame.drop:
new_df = df.drop(index=[1, 2, 4])
The resulting dataframe new_df will contain the following rows:
sales discount net_sales cogs STK_ID RPT_Date 600141 20060331 2.709 NaN 2.709 2.245 20061231 15.915 NaN 15.915 12.686 20070630 7.907 NaN 7.907 6.459
The above is the detailed content of How to Drop Rows from a Pandas Dataframe Based on a List of Index Labels?. For more information, please follow other related articles on the PHP Chinese website!