


Serializing Polymorphic Objects with Gson
Gson is a popular Java library for converting Java objects to and from JSON. One challenge in serializing objects with Gson is handling polymorphism, where multiple subclasses inherit from a common superclass.
Problem
Consider a scenario where you have a class hierarchy with a base class ObixBaseObj and multiple inherited classes like ObixOp. The goal is to serialize objects of these classes to JSON using Gson while preserving the inherited members (e.g., in and out for ObixOp).
GsonSerialization Example
<code class="java">ObixBaseObj lobbyObj = new ObixBaseObj(); lobbyObj.setIs("obix:Lobby"); ObixOp batchOp = new ObixOp(); batchOp.setName("batch"); batchOp.setIn("obix:BatchIn"); batchOp.setOut("obix:BatchOut"); lobbyObj.addChild(batchOp); Gson gson = new Gson(); System.out.println(gson.toJson(lobbyObj));</code>
Result
<code class="json">{"obix":"obj","is":"obix:Lobby","children":[{"obix":"op","name":"batch"}]}</code>
Notice that the serialized JSON does not include the inherited members of ObixOp (in and out).
RuntimeTypeAdapterFactory Solution
To handle polymorphism gracefully, Gson provides a powerful feature called RuntimeTypeAdapterFactory. This class automatically registers subclasses to their corresponding superclass for serialization and deserialization.
Implementation
<code class="java">RuntimeTypeAdapterFactory<obixbaseobj> adapter = RuntimeTypeAdapterFactory .of(ObixBaseObj.class) .registerSubtype(ObixBaseObj.class) .registerSubtype(ObixOp.class); Gson gson2=new GsonBuilder().setPrettyPrinting().registerTypeAdapterFactory(adapter).create(); Gson gson = new Gson(); System.out.println(gson.toJson(lobbyObj)); System.out.println("---------------------"); System.out.println(gson2.toJson(lobbyObj));</obixbaseobj></code>
Result
<code class="json">{"obix":"obj","is":"obix:Lobby","children":[{"obix":"op","name":"batch","children":[]}]} --------------------- { "type": "ObixBaseObj", "obix": "obj", "is": "obix:Lobby", "children": [ { "type": "ObixOp", "in": "obix:BatchIn", "out": "obix:BatchOut", "obix": "op", "name": "batch", "children": [] } ] }</code>
This solution correctly serializes all members, including those inherited by subclasses.
Handling Multiple Subclasses
In cases where there are multiple subclasses, Gson's RuntimeTypeAdapter provides a convenient mechanism to register them.
- Create a centralized class for registering types (e.g., GsonUtils):
<code class="java">public class GsonUtils { private static final GsonBuilder gsonBuilder = new GsonBuilder() .setPrettyPrinting(); public static void registerType( RuntimeTypeAdapterFactory> adapter) { gsonBuilder.registerTypeAdapterFactory(adapter); } public static Gson getGson() { return gsonBuilder.create(); } }</code>
- Register the adapter within the subclasses:
<code class="java">public class ObixBaseObj { private static final RuntimeTypeAdapterFactory<obixbaseobj> adapter = RuntimeTypeAdapterFactory.of(ObixBaseObj.class); static { GsonUtils.registerType(adapter); } private synchronized void registerClass() { if (!registeredClasses.contains(this.getClass())) { registeredClasses.add(this.getClass()); adapter.registerSubtype(this.getClass()); } } public ObixBaseObj() { registerClass(); obix = "obj"; } }</obixbaseobj></code>
This approach ensures that all subclasses are automatically registered with the GsonBuilder, simplifying the serialization process.
The above is the detailed content of How do you serialize polymorphic objects with Gson and preserve inherited members in the JSON output?. For more information, please follow other related articles on the PHP Chinese website!

JVM works by converting Java code into machine code and managing resources. 1) Class loading: Load the .class file into memory. 2) Runtime data area: manage memory area. 3) Execution engine: interpret or compile execution bytecode. 4) Local method interface: interact with the operating system through JNI.

JVM enables Java to run across platforms. 1) JVM loads, validates and executes bytecode. 2) JVM's work includes class loading, bytecode verification, interpretation execution and memory management. 3) JVM supports advanced features such as dynamic class loading and reflection.

Java applications can run on different operating systems through the following steps: 1) Use File or Paths class to process file paths; 2) Set and obtain environment variables through System.getenv(); 3) Use Maven or Gradle to manage dependencies and test. Java's cross-platform capabilities rely on the JVM's abstraction layer, but still require manual handling of certain operating system-specific features.

Java requires specific configuration and tuning on different platforms. 1) Adjust JVM parameters, such as -Xms and -Xmx to set the heap size. 2) Choose the appropriate garbage collection strategy, such as ParallelGC or G1GC. 3) Configure the Native library to adapt to different platforms. These measures can enable Java applications to perform best in various environments.

OSGi,ApacheCommonsLang,JNA,andJVMoptionsareeffectiveforhandlingplatform-specificchallengesinJava.1)OSGimanagesdependenciesandisolatescomponents.2)ApacheCommonsLangprovidesutilityfunctions.3)JNAallowscallingnativecode.4)JVMoptionstweakapplicationbehav

JVMmanagesgarbagecollectionacrossplatformseffectivelybyusingagenerationalapproachandadaptingtoOSandhardwaredifferences.ItemploysvariouscollectorslikeSerial,Parallel,CMS,andG1,eachsuitedfordifferentscenarios.Performancecanbetunedwithflagslike-XX:NewRa

Java code can run on different operating systems without modification, because Java's "write once, run everywhere" philosophy is implemented by Java virtual machine (JVM). As the intermediary between the compiled Java bytecode and the operating system, the JVM translates the bytecode into specific machine instructions to ensure that the program can run independently on any platform with JVM installed.

The compilation and execution of Java programs achieve platform independence through bytecode and JVM. 1) Write Java source code and compile it into bytecode. 2) Use JVM to execute bytecode on any platform to ensure the code runs across platforms.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
