Home > Article > Backend Development > How to Merge DataFrames Based on Their Indices?
Merging DataFrames by Index
Introduction
Merging dataframes is a common task in data analysis to combine information from multiple sources. Typically, merging is performed using columns as matching criteria. However, there are cases where you may need to merge dataframes based on their indices. This article provides guidance on how to accomplish that.
Merging Dataframes by Index Using Join Methods
To merge dataframes by index, you can use the following join methods:
<code class="python">pd.merge(df1, df2, left_index=True, right_index=True)</code>
<code class="python">df1.join(df2)</code>
<code class="python">pd.concat([df1, df2], axis=1)</code>
Examples
Consider the following dataframes:
<code class="python">df1 = pd.DataFrame({'a':range(6), 'b':[5,3,6,9,2,4]}, index=list('abcdef')) df2 = pd.DataFrame({'c':range(4), 'd':[10,20,30, 40]}, index=list('abhi'))</code>
Default Inner Join:
<code class="python">df3 = pd.merge(df1, df2, left_index=True, right_index=True)</code>
Output:
a b c d a 0 5 0 10 b 1 3 1 20
Default Left Join:
<code class="python">df4 = df1.join(df2)</code>
Output:
a b c d a 0 5 0.0 10.0 b 1 3 1.0 20.0 c 2 6 NaN NaN d 3 9 NaN NaN e 4 2 NaN NaN f 5 4 NaN NaN
Default Outer Join:
<code class="python">df5 = pd.concat([df1, df2], axis=1)</code>
Output:
a b c d a 0.0 5.0 0.0 10.0 b 1.0 3.0 1.0 20.0 c 2.0 6.0 NaN NaN d 3.0 9.0 NaN NaN e 4.0 2.0 NaN NaN f 5.0 4.0 NaN NaN h NaN NaN 2.0 30.0 i NaN NaN 3.0 40.0
The above is the detailed content of How to Merge DataFrames Based on Their Indices?. For more information, please follow other related articles on the PHP Chinese website!