search
HomeBackend DevelopmentPython TutorialImplementing a Perceptron from Scratch in Python

Implementing a Perceptron from Scratch in Python

Hi devs,

The Perceptron is one of the simplest and most fundamental concepts in machine learning. It’s a binary linear classifier that forms the basis of neural networks. In this post, I'll walk through the steps to understand and implement a Perceptron from scratch in Python.

Let's dive in!


What is a Perceptron?

A Perceptron is a basic algorithm for supervised learning of binary classifiers. Given input features, the Perceptron learns weights that help separate classes based on a simple threshold function. Here’s how it works in simple terms:

  1. Input: A vector of features (e.g., [x1, x2]).
  2. Weights: Each input feature has a weight, which the model adjusts based on how well the model is performing.
  3. Activation Function: Computes the weighted sum of the input features and applies a threshold to decide if the result belongs to one class or the other.

Mathematically, it looks like this:

f(x) = w1*x1 w2*x2 ... wn*xn b

Where:

  • f(x) is the output,
  • w represents weights,
  • x represents input features, and
  • b is the bias term.

If f(x) is greater than or equal to a threshold, the output is class 1; otherwise, it’s class 0.


Step 1: Import Libraries

We’ll use only NumPy here for matrix operations to keep things lightweight.

import numpy as np

Step 2: Define the Perceptron Class

We’ll build the Perceptron as a class to keep everything organized. The class will include methods for training and prediction.

class Perceptron:
    def __init__(self, learning_rate=0.01, epochs=1000):
        self.learning_rate = learning_rate
        self.epochs = epochs
        self.weights = None
        self.bias = None

    def fit(self, X, y):
        # Number of samples and features
        n_samples, n_features = X.shape

        # Initialize weights and bias
        self.weights = np.zeros(n_features)
        self.bias = 0

        # Training
        for _ in range(self.epochs):
            for idx, x_i in enumerate(X):
                # Calculate linear output
                linear_output = np.dot(x_i, self.weights) + self.bias
                # Apply step function
                y_predicted = self._step_function(linear_output)

                # Update weights and bias if there is a misclassification
                if y[idx] != y_predicted:
                    update = self.learning_rate * (y[idx] - y_predicted)
                    self.weights += update * x_i
                    self.bias += update

    def predict(self, X):
        # Calculate linear output and apply step function
        linear_output = np.dot(X, self.weights) + self.bias
        y_predicted = self._step_function(linear_output)
        return y_predicted

    def _step_function(self, x):
        return np.where(x >= 0, 1, 0)

In the code above:

  • fit: This method trains the model by adjusting weights and bias whenever it misclassifies a point.
  • predict: This method computes predictions on new data.
  • _step_function: This function applies a threshold to determine the output class.

Step 3: Prepare a Simple Dataset

We’ll use a small dataset to make it easy to visualize the output. Here’s a simple AND gate dataset:

# AND gate dataset
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 0, 0, 1])  # Labels for AND gate

Step 4: Train and Test the Perceptron

Now, let’s train the Perceptron and test its predictions.

# Initialize Perceptron
p = Perceptron(learning_rate=0.1, epochs=10)

# Train the model
p.fit(X, y)

# Test the model
print("Predictions:", p.predict(X))

Expected output for AND gate:

import numpy as np

Explanation of the Perceptron Learning Process

  1. Initialize Weights and Bias: At the start, weights are set to zero, which allows the model to start learning from scratch.
  2. Calculate Linear Output: For each data point, the Perceptron computes the weighted sum of the inputs plus the bias.
  3. Activation (Step Function): If the linear output is greater than or equal to zero, it assigns class 1; otherwise, it assigns class 0.
  4. Update Rule: If the prediction is incorrect, the model adjusts weights and bias in the direction that reduces the error. The update rule is given by: weights = learning_rate * (y_true - y_pred) * x

This makes the Perceptron update only for misclassified points, gradually pushing the model closer to the correct decision boundary.


Visualizing Decision Boundaries

Visualize the decision boundary after training. This is especially helpful if you’re working with more complex datasets. For now, we’ll keep things simple with the AND gate.


Extending to Multi-Layer Perceptrons (MLPs)

While the Perceptron is limited to linearly separable problems, it’s the foundation of more complex neural networks like Multi-Layer Perceptrons (MLPs). With MLPs, we add hidden layers and activation functions (like ReLU or Sigmoid) to solve non-linear problems.


Summary

The Perceptron is a straightforward but foundational machine learning algorithm. By understanding how it works and implementing it from scratch, we gain insights into the basics of machine learning and neural networks. The beauty of the Perceptron lies in its simplicity, making it a perfect starting point for anyone interested in AI.

The above is the detailed content of Implementing a Perceptron from Scratch in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools