


Atomic Memory Ordering in sync.Once
While exploring the source code of sync.Once, we stumble upon the reasoning behind using atomic.StoreUint32 instead of a standard assignment like o.done = 1.
Memory Ordering in Go
A fundamental concept in concurrent programming is memory ordering, which ensures that shared memory accesses are observed consistently across all processors. However, different architectures implement memory ordering differently, posing challenges for programmers.
Go addresses this by providing a uniform memory model, enforcing a relaxed but consistent memory ordering. All memory accesses are assumed to be asynchronous, with no guarantees of atomicity or ordering.
Atomic Operations in sync.Once
Despite the relaxed memory model, Go mandates the use of atomic operations for shared memory accesses to guarantee correctness across all supported architectures. In sync.Once, atomic.StoreUint32 is employed to safely update the done flag, ensuring that other goroutines can observe the effect of f() before the flag is set to 1.
Fast Path Optimization
atomic.StoreUint32 is utilized in the fast path of sync.Once to optimize performance while maintaining safety. The done flag is checked first with atomic.LoadUint32 and then written with atomic.StoreUint32 because reading the flag concurrently with writes is a data race.
Mutex Protection
The mutex used in doSlow serves to protect the done flag from concurrent writes. The flag can still be read without the mutex because it is a read operation, but concurrent writes must be synchronized to prevent data corruption.
In summary, the use of atomic.StoreUint32 in sync.Once is a consequence of Go's relaxed memory model and the necessity to guarantee thread safety on all supported architectures. By employing atomic operations, sync.Once can safely coordinate concurrent access to shared memory while optimizing performance in the fast path.
The above is the detailed content of Why does sync.Once use atomic.StoreUint32 instead of a standard assignment?. For more information, please follow other related articles on the PHP Chinese website!

Go's "strings" package provides rich features to make string operation efficient and simple. 1) Use strings.Contains() to check substrings. 2) strings.Split() can be used to parse data, but it should be used with caution to avoid performance problems. 3) strings.Join() is suitable for formatting strings, but for small datasets, looping = is more efficient. 4) For large strings, it is more efficient to build strings using strings.Builder.

Go uses the "strings" package for string operations. 1) Use strings.Join function to splice strings. 2) Use the strings.Contains function to find substrings. 3) Use the strings.Replace function to replace strings. These functions are efficient and easy to use and are suitable for various string processing tasks.

ThebytespackageinGoisessentialforefficientbyteslicemanipulation,offeringfunctionslikeContains,Index,andReplaceforsearchingandmodifyingbinarydata.Itenhancesperformanceandcodereadability,makingitavitaltoolforhandlingbinarydata,networkprotocols,andfileI

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
