Since I’ve been working with Go for quite some time, I thought it would be a fun challenge to implement a few classic low-level design solutions in it.
When designing an elevator system, one crucial aspect is how to decide which floor to service next, especially when the elevator has multiple requests. Go’s straightforward syntax and performance make it ideal for modeling such systems, so I set out to create basic implementations of FCFS (First Come First Serve), SSTF (Shortest Seek Time First), SCAN, and LOOK algorithms.
1. First Come First Serve (FCFS)
I started with the simplest approach: service requests in the order they’re received. It’s easy to implement but can be inefficient if the requests are spread out across floors, leading to more travel time.
func FCFS(currentFloor int, requests []int) []int { path := []int{} for _, floor := range requests { path = append(path, floor) } return path }
In FCFS, the elevator simply moves to each requested floor in the given order.
2. Shortest Seek Time First (SSTF)
SSTF tries to minimize travel by choosing the closest requested floor next. This reduces travel time but can lead to "starvation" for far-off requests if new closer requests keep coming.
func SSTF(currentFloor int, requests []int) []int { path := []int{} remaining := append([]int{}, requests...) for len(remaining) > 0 { closestIdx := 0 minDistance := abs(currentFloor - remaining[0]) for i, floor := range remaining { distance := abs(currentFloor - floor) if distance <p>This function finds the closest floor to the current floor each time, updating the elevator’s position after each move.</p> <h2> 3. SCAN (Elevator Algorithm) </h2> <p>In SCAN, the elevator moves in one direction, servicing all requests in that direction until it reaches the end, then reverses. This approach is more fair than SSTF because it reduces starvation.<br> </p> <pre class="brush:php;toolbar:false">func SCAN(currentFloor, maxFloor int, requests []int) []int { path := []int{} up := []int{} down := []int{} for _, floor := range requests { if floor >= currentFloor { up = append(up, floor) } else { down = append(down, floor) } } sort.Ints(up) sort.Sort(sort.Reverse(sort.IntSlice(down))) path = append(path, up...) path = append(path, down...) return path }
This function splits requests into floors above and below the current position. It serves all floors upwards, then downwards.
4. LOOK
LOOK is a slight variation of SCAN. Instead of going all the way to the end, the elevator reverses direction at the last request in each direction. It saves time by stopping where the requests end, not at the physical limits.
func LOOK(currentFloor int, requests []int) []int { path := []int{} up := []int{} down := []int{} for _, floor := range requests { if floor >= currentFloor { up = append(up, floor) } else { down = append(down, floor) } } sort.Ints(up) sort.Sort(sort.Reverse(sort.IntSlice(down))) path = append(path, up...) path = append(path, down...) return path }
Similar to SCAN, this approach only moves as far as the last request in each direction.
Each algorithm has its trade-offs:
- FCFS: Simple but can be inefficient.
- SSTF: Optimizes for closest floors but can starve far-off requests.
- SCAN: Fairer and efficient, minimizing direction changes.
- LOOK: Saves additional time by stopping at the last request.
The right choice depends on the specific requirements for efficiency, fairness, and response time in the system.
For full implementation using LOOK algorithm, refer to my github repo:
thesaltree
/
low-level-design-golang
Low level system design problems solutions in Golang
Low-Level System Design in Go
Welcome to the Low-Level System Design in Go repository! This repository contains various low-level system design problems and their solutions implemented in Go. The primary aim is to demonstrate the design and architecture of systems through practical examples.
Table of Contents
- Overview
- Parking Lot System
- Elevator System
Overview
Low-level system design involves understanding the core concepts of system architecture and designing scalable, maintainable, and efficient systems. This repository will try to cover solutions of various problems and scenarios using Go.
Parking Lot System
The first project in this repository is a Parking Lot System. This system simulates a parking lot where vehicles can be parked and unparked. It demonstrates:
- Singleton design pattern for managing the parking lot instance.
- Handling different types of vehicles (e.g., cars, trucks).
- Parking space management across multiple floors.
- Payment processing for parked vehicles.
Features
- Add and remove vehicles from the…
The above is the detailed content of Elevator Scheduling Algorithms: FCFS, SSTF, SCAN, and LOOK. For more information, please follow other related articles on the PHP Chinese website!

Golangisidealforperformance-criticalapplicationsandconcurrentprogramming,whilePythonexcelsindatascience,rapidprototyping,andversatility.1)Forhigh-performanceneeds,chooseGolangduetoitsefficiencyandconcurrencyfeatures.2)Fordata-drivenprojects,Pythonisp

Golang achieves efficient concurrency through goroutine and channel: 1.goroutine is a lightweight thread, started with the go keyword; 2.channel is used for secure communication between goroutines to avoid race conditions; 3. The usage example shows basic and advanced usage; 4. Common errors include deadlocks and data competition, which can be detected by gorun-race; 5. Performance optimization suggests reducing the use of channel, reasonably setting the number of goroutines, and using sync.Pool to manage memory.

Golang is more suitable for system programming and high concurrency applications, while Python is more suitable for data science and rapid development. 1) Golang is developed by Google, statically typing, emphasizing simplicity and efficiency, and is suitable for high concurrency scenarios. 2) Python is created by Guidovan Rossum, dynamically typed, concise syntax, wide application, suitable for beginners and data processing.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Go language has unique advantages in concurrent programming, performance, learning curve, etc.: 1. Concurrent programming is realized through goroutine and channel, which is lightweight and efficient. 2. The compilation speed is fast and the operation performance is close to that of C language. 3. The grammar is concise, the learning curve is smooth, and the ecosystem is rich.

The main differences between Golang and Python are concurrency models, type systems, performance and execution speed. 1. Golang uses the CSP model, which is suitable for high concurrent tasks; Python relies on multi-threading and GIL, which is suitable for I/O-intensive tasks. 2. Golang is a static type, and Python is a dynamic type. 3. Golang compiled language execution speed is fast, and Python interpreted language development is fast.

Golang is usually slower than C, but Golang has more advantages in concurrent programming and development efficiency: 1) Golang's garbage collection and concurrency model makes it perform well in high concurrency scenarios; 2) C obtains higher performance through manual memory management and hardware optimization, but has higher development complexity.

Golang is widely used in cloud computing and DevOps, and its advantages lie in simplicity, efficiency and concurrent programming capabilities. 1) In cloud computing, Golang efficiently handles concurrent requests through goroutine and channel mechanisms. 2) In DevOps, Golang's fast compilation and cross-platform features make it the first choice for automation tools.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool