search
HomeBackend DevelopmentGolangHow can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?

How can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?

How to optimise this 8-bit positional popcount using assembly?

In the provided code, the function __mm_add_epi32_inplace_purego can be optimized using assembly to improve its performance. The inner loop in particular can be optimized for faster execution.

The provided algorithm for counting positional population is called a "positional population count." This algorithm is used in machine learning and involves counting the number of set bits in a series of bytes. In the given code, _mm_add_epi32_inplace_purego is called in two levels of loop, and the goal is to optimize the inner loop.

The provided code primarily works on an array of 8-bit integers called counts. The inner loop iterates over a byte slice, and for each byte, it adds the corresponding bit positions from an array of bit patterns (_expand_byte) to the counts array. The _expand_byte array contains bit patterns that expand each byte into its individual bits.

To optimize the inner loop using assembly, you need to keep the counters in general-purpose registers for better performance and prefetch memory well in advance to improve streaming behavior. You can also implement scalar population counting using a simple shift and add combination (SHRL/ADCL).

An example of optimized assembly code is provided below. This code is written for a specific processor architecture and may need to be modified to run on other systems.

<code class="assembly">#include "textflag.h"

// func PospopcntReg(counts *[8]int32, buf []byte)
TEXT ·PospopcntReg(SB),NOSPLIT,-32
    MOVQ counts+0(FP), DI
    MOVQ buf_base+8(FP), SI     // SI = &buf[0]
    MOVQ buf_len+16(FP), CX     // CX = len(buf)

    // load counts into register R8--R15
    MOVL 4*0(DI), R8
    MOVL 4*1(DI), R9
    MOVL 4*2(DI), R10
    MOVL 4*3(DI), R11
    MOVL 4*4(DI), R12
    MOVL 4*5(DI), R13
    MOVL 4*6(DI), R14
    MOVL 4*7(DI), R15

    SUBQ , CX            // pre-subtract 32 bit from CX
    JL scalar

vector: VMOVDQU (SI), Y0        // load 32 bytes from buf
    PREFETCHT0 384(SI)      // prefetch some data
    ADDQ , SI            // advance SI past them

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R15            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R14            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R13            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R12            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R11            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R10            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R9         // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R8         // add to counter

    SUBQ , CX
    JGE vector          // repeat as long as bytes are left

scalar: ADDQ , CX            // undo last subtraction
    JE done             // if CX=0, there's nothing left

loop:   MOVBLZX (SI), AX        // load a byte from buf
    INCQ SI             // advance past it

    SHRL , AX         // CF=LSB, shift byte to the right
    ADCL , R8         // add CF to R8

    SHRL , AX
    ADCL , R9         // add CF to R9

    SHRL , AX
    ADCL , R10            // add CF to R10

    SHRL , AX
    ADCL , R11            // add CF to R11

    SHRL , AX
    ADCL , R12            // add CF to R12

    SHRL , AX
    ADCL , R13            // add CF to R13

    SHRL , AX
    ADCL , R14            // add CF to R14

    SHRL , AX
    ADCL , R15            // add CF to R15

    DECQ CX             // mark this byte as done
    JNE loop            // and proceed if any bytes are left

    // write R8--R15 back to counts
done:   MOVL R8, 4*0(DI)
    MOVL R9, 4*1(DI)
    MOVL R10, 4*2(DI)
    MOVL R11, 4*3(DI)
    MOVL R12, 4*4(DI)
    MOVL R13, 4*5(DI)
    MOVL R14, 4*6(DI)
    MOVL R15, 4*7(DI)

    VZEROUPPER          // restore SSE-compatibility
    RET</code>

In summary, the optimization involves using general-purpose registers for counters, prefetching memory in advance, and implementing scalar population counting using SHRL/ADCL. This approach can significantly improve the performance of the positional population count algorithm.

The above is the detailed content of How can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
String Manipulation in Go: Mastering the 'strings' PackageString Manipulation in Go: Mastering the 'strings' PackageMay 14, 2025 am 12:19 AM

Mastering the strings package in Go language can improve text processing capabilities and development efficiency. 1) Use the Contains function to check substrings, 2) Use the Index function to find the substring position, 3) Join function efficiently splice string slices, 4) Replace function to replace substrings. Be careful to avoid common errors, such as not checking for empty strings and large string operation performance issues.

Go 'strings' package tips and tricksGo 'strings' package tips and tricksMay 14, 2025 am 12:18 AM

You should care about the strings package in Go because it simplifies string manipulation and makes the code clearer and more efficient. 1) Use strings.Join to efficiently splice strings; 2) Use strings.Fields to divide strings by blank characters; 3) Find substring positions through strings.Index and strings.LastIndex; 4) Use strings.ReplaceAll to replace strings; 5) Use strings.Builder to efficiently splice strings; 6) Always verify input to avoid unexpected results.

'strings' Package in Go: Your Go-To for String Operations'strings' Package in Go: Your Go-To for String OperationsMay 14, 2025 am 12:17 AM

ThestringspackageinGoisessentialforefficientstringmanipulation.1)Itofferssimpleyetpowerfulfunctionsfortaskslikecheckingsubstringsandjoiningstrings.2)IthandlesUnicodewell,withfunctionslikestrings.Fieldsforwhitespace-separatedvalues.3)Forperformance,st

Go bytes package vs strings package: Which should I use?Go bytes package vs strings package: Which should I use?May 14, 2025 am 12:12 AM

WhendecidingbetweenGo'sbytespackageandstringspackage,usebytes.Bufferforbinarydataandstrings.Builderforstringoperations.1)Usebytes.Bufferforworkingwithbyteslices,binarydata,appendingdifferentdatatypes,andwritingtoio.Writer.2)Usestrings.Builderforstrin

How to use the 'strings' package to manipulate strings in Go step by stepHow to use the 'strings' package to manipulate strings in Go step by stepMay 13, 2025 am 12:12 AM

Go's strings package provides a variety of string manipulation functions. 1) Use strings.Contains to check substrings. 2) Use strings.Split to split the string into substring slices. 3) Merge strings through strings.Join. 4) Use strings.TrimSpace or strings.Trim to remove blanks or specified characters at the beginning and end of a string. 5) Replace all specified substrings with strings.ReplaceAll. 6) Use strings.HasPrefix or strings.HasSuffix to check the prefix or suffix of the string.

Go strings package: how to improve my code?Go strings package: how to improve my code?May 13, 2025 am 12:10 AM

Using the Go language strings package can improve code quality. 1) Use strings.Join() to elegantly connect string arrays to avoid performance overhead. 2) Combine strings.Split() and strings.Contains() to process text and pay attention to case sensitivity issues. 3) Avoid abuse of strings.Replace() and consider using regular expressions for a large number of substitutions. 4) Use strings.Builder to improve the performance of frequently splicing strings.

What are the most useful functions in the GO bytes package?What are the most useful functions in the GO bytes package?May 13, 2025 am 12:09 AM

Go's bytes package provides a variety of practical functions to handle byte slicing. 1.bytes.Contains is used to check whether the byte slice contains a specific sequence. 2.bytes.Split is used to split byte slices into smallerpieces. 3.bytes.Join is used to concatenate multiple byte slices into one. 4.bytes.TrimSpace is used to remove the front and back blanks of byte slices. 5.bytes.Equal is used to compare whether two byte slices are equal. 6.bytes.Index is used to find the starting index of sub-slices in largerslices.

Mastering Binary Data Handling with Go's 'encoding/binary' Package: A Comprehensive GuideMastering Binary Data Handling with Go's 'encoding/binary' Package: A Comprehensive GuideMay 13, 2025 am 12:07 AM

Theencoding/binarypackageinGoisessentialbecauseitprovidesastandardizedwaytoreadandwritebinarydata,ensuringcross-platformcompatibilityandhandlingdifferentendianness.ItoffersfunctionslikeRead,Write,ReadUvarint,andWriteUvarintforprecisecontroloverbinary

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools