Home >Backend Development >Python Tutorial >How to Efficiently Replace Whitespace Values with NaN in Pandas DataFrames?
Problem:
Consider a Pandas dataframe with whitespace values present in certain columns. The goal is to replace these white spaces with NaN values.
Ugly Solution:
<code class="python">for i in df.columns: df[i][df[i].apply(lambda i: True if re.search('^\s*$', str(i)) else False)]=None</code>
This solution iterates through each column, generates a boolean mask using regex, and replaces white space values with None. However, it's inefficient and non-idiomatic.
Improved Solution:
<code class="python">df = pd.DataFrame([ [-0.532681, 'foo', 0], [1.490752, 'bar', 1], [-1.387326, 'foo', 2], [0.814772, 'baz', ' '], [-0.222552, ' ', 4], [-1.176781, 'qux', ' '], ], columns='A B C'.split(), index=pd.date_range('2000-01-01','2000-01-06')) # replaces field that's entirely space (or empty) with NaN print(df.replace(r'^\s*$', np.nan, regex=True))</code>
This solution takes advantage of Pandas' built-in replace() function, which can be used to replace specified values based on a regex pattern. By using r'^s*$', the regex matches and replaces any field that consists entirely of whitespace (or is empty) with NaN.
Optimizations:
The above is the detailed content of How to Efficiently Replace Whitespace Values with NaN in Pandas DataFrames?. For more information, please follow other related articles on the PHP Chinese website!