search
HomeBackend DevelopmentPython TutorialHow to efficiently add multiple columns to a Pandas DataFrame in a single assignment?

How to efficiently add multiple columns to a Pandas DataFrame in a single assignment?

Adding Multiple Columns to Pandas DataFrames in a Single Assignment

In Pandas, adding multiple columns simultaneously can be achieved in various ways. One approach is to assign values to each column individually, but this can become tedious for multiple columns. A more efficient method is to add the columns in one step.

At first glance, assigning a list or array to multiple new columns using the column-list syntax (e.g., df[['new1', 'new2]] = [scalar, scalar]) may seem intuitive. However, this assignment only works for existing columns.

To add new columns and assign values in a single operation, you can use several approaches:

1. Iterator Unpacking:

<code class="python">df['new1'], df['new2'], df['new3'] = np.nan, 'dogs', 3</code>

This approach assigns values iteratively to each new column.

2. DataFrame Expansion:

<code class="python">df[['new1', 'new2', 'new3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>

This method creates a DataFrame with a single row that matches the index of the original DataFrame, then uses Pandas' concat function to merge the new columns into the original.

3. Temporary DataFrame Join:

<code class="python">df = pd.concat([df, pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['new1', 'new2', 'new3'])], axis=1)</code>

This approach creates a temporary DataFrame with the new columns and values, then joins it with the original DataFrame.

4. Dictionary Assignment:

<code class="python">df = df.join(pd.DataFrame({'new1': np.nan, 'new2': 'dogs', 'new3': 3}, index=df.index))</code>

This method uses a dictionary to create a temporary DataFrame that is then joined with the original DataFrame.

5. .assign() Method:

<code class="python">df = df.assign(new1=np.nan, new2='dogs', new3=3)</code>

The .assign() method allows for assignment of multiple columns at once.

6. Create Columns and Assign Values:

<code class="python">new_cols = ['new1', 'new2', 'new3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols)
df[new_cols] = new_vals</code>

This technique creates empty columns and assigns values separately.

Multiple Individual Assignments:

<code class="python">df['new1'] = np.nan
df['new2'] = 'dogs'
df['new3'] = 3</code>

While not as efficient as the other methods, individual assignments are straightforward and can be used for a small number of new columns.

The best choice depends on the specific requirements and performance considerations. For adding multiple columns simultaneously, the DataFrame expansion or temporary DataFrame join approaches provide a concise and efficient solution.

The above is the detailed content of How to efficiently add multiple columns to a Pandas DataFrame in a single assignment?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

How to solve the permissions problem encountered when viewing Python version in Linux terminal?How to solve the permissions problem encountered when viewing Python version in Linux terminal?Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Atom editor mac version download

Atom editor mac version download

The most popular open source editor