Home >Backend Development >Python Tutorial >How Do Pandas Handle Nested JSON Objects?

How Do Pandas Handle Nested JSON Objects?

Barbara Streisand
Barbara StreisandOriginal
2024-10-24 18:28:05742browse

How Do Pandas Handle Nested JSON Objects?

How to Handle Nested JSON Objects with Pandas

In this article, we'll explore how to effectively manipulate JSON data structures with nested objects using pandas.

Nested JSON Structure

Consider the following JSON structure:

<code class="json">{
    "number": "",
    "date": "01.10.2016",
    "name": "R 3932",
    "locations": [
        {
            "depTimeDiffMin": "0",
            "name": "Spital am Pyhrn Bahnhof",
            "arrTime": "",
            "depTime": "06:32",
            "platform": "2",
            "stationIdx": "0",
            "arrTimeDiffMin": "",
            "track": "R 3932"
        },
        {
            "depTimeDiffMin": "0",
            "name": "Windischgarsten Bahnhof",
            "arrTime": "06:37",
            "depTime": "06:40",
            "platform": "2",
            "stationIdx": "1",
            "arrTimeDiffMin": "1",
            "track": ""
        },
        {
            "depTimeDiffMin": "",
            "name": "Linz/Donau Hbf",
            "arrTime": "08:24",
            "depTime": "",
            "platform": "1A-B",
            "stationIdx": "22",
            "arrTimeDiffMin": "1",
            "track": ""
        }
    ]
}</code>

Flattening with json_normalize

pandas' json_normalize function allows us to flatten nested objects into a tabular format:

<code class="python">import json

with open('myJson.json') as data_file:    
    data = json.load(data_file)  

df = pd.json_normalize(data, 'locations', ['date', 'number', 'name'], 
                    record_prefix='locations_')</code>

This results in a DataFrame with columns for each key in the nested "locations" object.

Grouped Concatenation without Flattening

If flattening is not desired, you can use Pandas' grouping and concatenation capabilities:

<code class="python">df = pd.read_json("myJson.json")
df.locations = pd.DataFrame(df.locations.values.tolist())['name']
df = df.groupby(['date', 'name', 'number'])['locations'].apply(','.join).reset_index()</code>

This approach concatenates the "locations" values as a comma-separated string for each unique combination of "date", "name", and "number".

Conclusion

By utilizing pandas' json_normalize and grouping/concatenation features, we can effectively handle nested JSON structures, allowing us to extract and manipulate data in a tabular format.

The above is the detailed content of How Do Pandas Handle Nested JSON Objects?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn