


How to create an image authentication system with python streamlit and canva!
The includes
import streamlit as st import # your database manager here! from cryptography.fernet import Fernet from PIL import Image, PngImagePlugin import base64, hashlib, uuid
Initialize a session with streamlit if you want to
def initialize_session_state(): pass
The main script:
class BadgeConfig: def __init__(self): initialize_session_state() # Ensure badge_id is stored as a class attribute self.badge_id = None # Generate a SHA-256 hash from image data def generate_image_hash(self, image_data): return hashlib.sha256(image_data).hexdigest() # Create the encryption signature using Fernet def create_signature(self, unique_id): id_image_bytes = unique_id.encode("utf-8") # Ensure 32-byte length padded_id_image_bytes = id_image_bytes.ljust(32)[:32] encoded_key = base64.urlsafe_b64encode(padded_id_image_bytes) return Fernet(encoded_key) # Check if image was created on Canva using PngImagePlugin def is_canva_image(self, image): if isinstance(image, PngImagePlugin.PngImageFile): # Extract metadata from the image metadata = image.info # Info contains the metadata # Checking if 'Canva' appears in the 'xmp:CreatorTool' field xmp_metadata = metadata.get('XML:com.adobe.xmp', '') if "Canva" in xmp_metadata: return True return False # Display the uploaded badge and validate its dimensions and source def process_image(self, user_badge): try: image = Image.open(user_badge) WIDTH, HEIGHT = image.size if WIDTH != 1080 or HEIGHT != 1920: st.warning("This is not a valid dnakey-badge!") st.stop() # Check if the image is created on Canva if not self.is_canva_image(image): st.warning("The uploaded image is not a Canva PNG image!") st.stop() st.image(user_badge, caption="Uploaded Image", use_column_width=True) # Reset the file pointer and read the image data for hashing user_badge.seek(0) return user_badge.read() except Exception as e: st.error(f"Error processing the image: {str(e)}") st.stop() # Handle badge activation and update session def activate_badge(self, badge_usage, config_manager): if not st.session_state['toast_shown']: st.toast("**:blue[Your Id Badge is activated now!]**", icon="?") st.session_state['toast_shown'] = True if not st.session_state['usage_updated'] and badge_usage > 0: config_manager.update_usage_badge_count() st.session_state['usage_updated'] = True # Main function to create a session and handle badge logic def create_session(self, user_badge): # Process image and generate its unique ID image_data = self.process_image(user_badge) unique_id = self.generate_image_hash(image_data) # Create an encryption signature signature = self.create_signature(unique_id) # Create a UUID (version 5) based on the existing unique_id self.badge_id = str(uuid.uuid5(uuid.NAMESPACE_DNS, unique_id)) # Initialize config manager config_manager = ConfigManager(self.badge_id) badge_usage = config_manager.get_badge_usage() # Handle badge activation and session updates self.activate_badge(badge_usage, config_manager) return signature, self.badge_id # Return the badge_id as well # call the script with st.sidebar: st.title("Log-In Here:") with st.popover("Upload Your Agent Badge!", use_container_width=True): user_badge = st.file_uploader("Your Agent Badge!", type=["png"], key="agent_badge") if user_badge: # User badge is uploaded signature, badge_id = BadgeConfig().create_session(user_badge)
The above is the detailed content of How to create an image authentication system with python streamlit and canva!. For more information, please follow other related articles on the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download
The most popular open source editor

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor
