Home >Backend Development >Python Tutorial >How to Pass Arguments to Apply Functions for Pandas Series in Python?
Passing Arguments to Series Apply Functions in Python Pandas
The pandas library provides the 'apply()' method to apply a function to each element of a Series. However, older versions of pandas do not allow additional arguments to be passed to the function.
Solution for Older Versions of Pandas:
To handle this limitation in older versions of pandas, you can use 'functools.partial()' or 'lambda' functions:
Using 'functools.partial()':
<code class="python">import functools import operator # Define a function with multiple arguments def add_3(a, b, c): return a + b + c # Create a partial function by binding extra arguments add_3_partial = functools.partial(add_3, 2, 3) # Apply the partial function to a series series.apply(add_3_partial)</code>
Using 'lambda':
<code class="python"># Create a lambda function to pass extra arguments to the apply method lambda_func = lambda x: my_function(a, b, c, d, ..., x) # Apply the lambda function to the series series.apply(lambda_func)</code>
Solution for Newer Versions of Pandas:
Since October 2017, pandas supports passing both positional and keyword arguments directly to the 'apply()' method:
<code class="python">series.apply(my_function, args=(2, 3, 4), extra_kw={"example": 5})</code>
In this syntax, positional arguments are added after the element of the Series, while keyword arguments are passed as a dictionary.
The above is the detailed content of How to Pass Arguments to Apply Functions for Pandas Series in Python?. For more information, please follow other related articles on the PHP Chinese website!