search
HomeBackend DevelopmentPython TutorialExploring Async Deepgram API: Speech-to-Text using Python

Today will explore the Deepgram API for converting voice to text [transcription]. Whether building a voice assistant, transcribing meetings or creating a voice-controlled app, Deepgram makes it easier than ever to get started.

Exploring Async Deepgram API: Speech-to-Text using Python

What is Deepgram?

Deepgram is a powerful speech recognition platform that uses advanced machine learning models to transcribe audio in real-time. It offers an easy-to-use API that developers can integrate into their applications for tasks like transcribing phone calls, converting meetings into text, or even analyzing customer interactions.

Why Use Deepgram?

  • Accuracy: Deepgram boasts high accuracy rates thanks to its deep learning algorithms trained on vast datasets.

  • Real-Time Transcription: Get instant results as you speak, perfect for live applications.

  • Multiple Languages: Supports several languages and accents, making it versatile for global applications.

Getting Started with Deepgram API

Install - pip install httpx

Importing Required Libraries

import httpx
import asyncio
import logging
import traceback

Defining the Asynchronous Function

#recording_url: The URL of the audio file to be transcribed.
#callback_url: The URL to which Deepgram will send the #transcription results (optional).
#api_key: Your Deepgram API key.

async def transcribe_audio(recording_url: str, callback_url: str, api_key: str):
    url = "https://api.deepgram.com/v1/listen"

    # Define headers
    headers = {
        "Authorization": f"Token {api_key}"
    }

    # Define query parameters
    query_params = {
        "callback_method": "post",
        "callback": callback_url
    }

    # Define body parameters
    body_params = {
        "url": recording_url
    }

4. Sending the Asynchronous Request

    logger.info(f"Sending request to {url} with headers: {headers}, query: {query_params}, body: {body_params}")

    async with httpx.AsyncClient(timeout=60.0) as client:
        try:
            # Make a POST request with query parameters and body
            response = await client.post(url, headers=headers, params=query_params, json=body_params)
            response.raise_for_status()  # Raise an error for HTTP error responses
            result = response.json()
            logger.info(f"Response received: {result}")

            return result

We create an instance of httpx.AsyncClient with a timeout of 60 seconds. Using async with ensures that the client is properly closed after the block is executed.
If the request is successful, we parse the JSON response and log it, then return the result.

Call back URL :

You can use for sample call back URL for testing.

conclusion:

This structured approach highlights how to utilize asynchronous programming in Python to interact with the Deepgram API efficiently. By breaking the code into blocks and explaining each part, readers can better understand the implementation and how to adapt it to their own needs.

The above is the detailed content of Exploring Async Deepgram API: Speech-to-Text using Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.