Today will explore the Deepgram API for converting voice to text [transcription]. Whether building a voice assistant, transcribing meetings or creating a voice-controlled app, Deepgram makes it easier than ever to get started.
What is Deepgram?
Deepgram is a powerful speech recognition platform that uses advanced machine learning models to transcribe audio in real-time. It offers an easy-to-use API that developers can integrate into their applications for tasks like transcribing phone calls, converting meetings into text, or even analyzing customer interactions.
Why Use Deepgram?
Accuracy: Deepgram boasts high accuracy rates thanks to its deep learning algorithms trained on vast datasets.
Real-Time Transcription: Get instant results as you speak, perfect for live applications.
Multiple Languages: Supports several languages and accents, making it versatile for global applications.
Getting Started with Deepgram API
Install - pip install httpx
Importing Required Libraries
import httpx import asyncio import logging import traceback
Defining the Asynchronous Function
#recording_url: The URL of the audio file to be transcribed. #callback_url: The URL to which Deepgram will send the #transcription results (optional). #api_key: Your Deepgram API key. async def transcribe_audio(recording_url: str, callback_url: str, api_key: str): url = "https://api.deepgram.com/v1/listen" # Define headers headers = { "Authorization": f"Token {api_key}" } # Define query parameters query_params = { "callback_method": "post", "callback": callback_url } # Define body parameters body_params = { "url": recording_url }
4. Sending the Asynchronous Request
logger.info(f"Sending request to {url} with headers: {headers}, query: {query_params}, body: {body_params}") async with httpx.AsyncClient(timeout=60.0) as client: try: # Make a POST request with query parameters and body response = await client.post(url, headers=headers, params=query_params, json=body_params) response.raise_for_status() # Raise an error for HTTP error responses result = response.json() logger.info(f"Response received: {result}") return result
We create an instance of httpx.AsyncClient with a timeout of 60 seconds. Using async with ensures that the client is properly closed after the block is executed.
If the request is successful, we parse the JSON response and log it, then return the result.
Call back URL :
You can use for sample call back URL for testing.
conclusion:
This structured approach highlights how to utilize asynchronous programming in Python to interact with the Deepgram API efficiently. By breaking the code into blocks and explaining each part, readers can better understand the implementation and how to adapt it to their own needs.
The above is the detailed content of Exploring Async Deepgram API: Speech-to-Text using Python. For more information, please follow other related articles on the PHP Chinese website!

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Linux new version
SublimeText3 Linux latest version
